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Design and optimization of fabric-formed
beams and trusses: evolutionary algorithms

and form-finding

Fabric formwork entails the use of fabrics as the main contact
material for a concrete mould. The fabric is either hung or pre-
stressed in a supporting falsework frame. Beams or trusses cast
in fabric formwork are inherently non-prismatic and have been
shown to offer potential for structurally efficient shapes. The
casting of beams or trusses in fabric formwork is a highly non-lin-
ear problem due to the interaction of the fluid concrete with the
woven, prestressed fabric material. Numerical models need to be
developed for the engineering of these elements. To this end, it is
demonstrated that it is feasible to integrate manufacturing con-
straints in an automatic optimization process. This is achieved by
creating an automated computational framework that includes
fabric form-finding and finite element analysis, which operate
within an optimization process that uses principles from biologi-
cal evolution. The results show structurally efficient and manu-
facturable beams and demonstrate potential for optimization in
general that explicitly includes fabrication considerations.

Keywords: fabric formwork, form-finding, dynamic relaxation, genetic
algorithm, differential evolution

1 Introduction

The concept of casting concrete in fabrics has resurfaced
at various times and in different forms over the past 100
years [1]. The use of fabric in formworks allows savings on
formwork material and results in concrete with unconven-
tional aesthetics. Most applications of fabric formwork
tend to have a clear function that is either structural or ar-
chitectural. Structural examples include shell structures
(Fig. 1), foundations, revetments and circular columns,
whereas architectural examples include fabric-formed
walls and facade panels (Fig. 2), where the fabric is used to
create a certain surface texture. Fabric-formed structures
that feature architectural expression while serving a main
loadbearing purpose do exist, but they are few in number
and involve academia for the design. The lack of engineer-
ing tools for design and analysis is one reason why the po-
tential of fabric-formed structures is seldom translated in-
to commercial projects.

A comparison can be drawn with the engineering
practice of tensile structures. Both often rely on physical
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modelling during the initial design stages and require
form-finding software to determine the geometry and sub-
sequent stresses at later stages. Several aspects of the de-
sign process are therefore similar. It would be good if soft-

Fig. 1. James de Waller, Church of Christ the King and St. Peter, Bristol,
1950 (since demolished), expressive, but entirely shaped by structural con-
siderations; reproduced by permission of the “The Architects’ Journal”

Fig. 2. Miguel Fisac, Casa Pascual de Juan en La Moraleja, Madrid, 1975,
architectural fagade panels, non-loadbearing; reproduced by permission of
Fundacion Miguel Fisac
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ware tools and modelling were to become available for
fabric formwork design as well. They would enable engi-
neers to derive data on the fabric of a fabric formwork
such as the prestress, stresses and strains during loading,
fabric size and possible cutting patterns. Furthermore, the
unconventional concrete geometries that result from fab-
ric formwork have to be understood and analysed as well.
General engineering rules of thumb for structural ele-
ments often rely on the assumption that the member is
prismatic, which may limit how fabric formwork is ap-
plied. Overall, a better understanding of the design and en-
gineering of fabric-formed structures is necessary to allow
more complex geometries to be realized without input
from academia.

2  Scope of the research and approach

The main objective of this research project was to demon-
strate the viability of combining an optimization algo-
rithm with manufacturing constraints. The research was
carried out at the Faculty of Civil Engineering and Geo-
sciences, Delft University of Technology [14]. Fabric form-
work was chosen from current developments in manufac-
turing methods because it posed interesting and complex
constraints. The entire automated computational process
that was developed consisted of three main elements: a
form-finding algorithm that calculates the shape of the
formwork, a structural analysis that evaluates the resulting
concrete element and, finally, an optimization algorithm
that continually improves on the results.

The interaction with the optimization is as follows:
the form-finding is driven by the boundary constraints
(e.g. fabric supports and prestressing), its results are evalu-
ated using finite element analysis and these results are
then used to determine new “evolved” boundary con-
straints for the form-finding for a new set of beams.

These three tasks were programmed in a Java frame-
work using dynamic relaxation for form-finding and inter-
facing with the finite element program ANSYS for struc-
tural analysis combined within differential evolution for
optimization (Fig. 3).
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Fig. 3. Simplified diagram of FabricFormer framework

242 Structural Concrete 12 (2011), No. 4

Before discussing each element, an overview is given
of existing research on the numerical analysis of fabric
formwork and fabric-formed beams to which the software
was applied.

3 Existing research

The amount of research on the computational structural
analysis of fabric-formed elements is very limited. The on-
ly example prior to this research concerns the optimiza-
tion of fabric-formed panels [2]. A manual iterative proce-
dure was developed to achieve an optimum structural
shape for a panel based on its support conditions. The
panel was analysed in a finite element program and
checked for strength requirements based on the load case.
Vrije Universiteit Brussel recently performed studies on
the modelling and shaping of fabric formwork. A software
program for the design and analysis of tensile structures,
EASY, was used [3]. Prototypes made for verification in-
clude a non-prismatic column and a hyperboloid-like shell
structure. ETH Zurich has used a novel form-finding strat-
egy to calculate the fabric and prestressing required to ap-
proximate a given target shape for a fabric-formed shell,
applied to a hyperbolic paraboloid [4].

Specific research into fabric-formed beams and truss-
es has been performed at three other universities. Various
methods of manufacturing these elements, such as keel
and pinch moulds (Figs. 4 and 5), have been developed at
the University of Manitoba in Canada, where the Centre
for Architectural and Structural Technology is devoted
primarily to research into fabric formwork. Early exam-
ples are beams that follow the geometry of the bending
moment diagram. Later geometries evolved into trusses as
attempts were made to reduce material along the neutral
axis of the beam [5]. A related study at the University of
Edinburgh investigated a keel mould-type beam [6]. Sever-
al consecutive theses at the University of Bath have ap-
proached these methods from an engineering point of
view [7, 8] and research on the topic remains ongoing.
Geometries were optimized for shear and bending resis-
tance, approximated with a fabric formwork and subse-
quently cast to analyse structural response, material sav-
ings and labour costs. The ultimate load capacity was
compared with that of a rectangular beam based on the
same maximum top width and maximum depth. Results
show concrete material savings of 25 % for a keel mould-
type beam and 44 % for a beam with a keyhole-shaped sec-
tion (Fig. 6). The disadvantage of the latter beam is the
higher complexity of the formwork required and a corre-
sponding increase in labour costs.

4 Form-finding and analysis

The shape of tensioned membrane structures is not
known in advance because it depends on the interaction
of boundary conditions, the prestressing of the fabric and
the fabric’s (non-linear) material properties. A calculation
process called form-finding is therefore required. The de-
sign and engineering of fabric formworks poses similar
considerations and should adhere to the same safety ap-
proaches, such as using stress factors instead of load fac-
tors (which would change the geometry of the fabric).
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Fig. 6. Keel mould (left) and keyhole-shaped (right) beams undergoing bending tests; reproduced by permission of 7im Ibell, University of Bath

However, safety factors and load cases can be less conser-
vative due to the short-term use of fabric formwork. Fabric
formwork also introduces the following three complicat-
ing factors:

1.

The fresh concrete poured into the mould causes a
transient load. The stability of the formwork should be
considered during casting as well as in the final situa-
tion, depending on the concreting operations. The final
shape is also influenced by the speed and method of
casting due to concrete hardening. As the concrete

hardens, the pressures it exerts are no longer entirely
hydrostatic because lateral fluid pressures decrease.
Furthermore, when permeable fabrics are used, the
bleeding of mix water through the formwork membrane
further reduces the fluid behaviour of the wet concrete.
These effects can be advantageous because the ultimate
stress of the fabric will be lower than that in a purely
hydrostatic situation, but requires strict limits for the
rate of concrete placement to be observed during con-
struction.
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2. Some types of fabric formwork introduce rigid ele-
ments that push or pull the fabric surface while the fab-
ric is still able to slide in-plane. These elements have
been referred to as “pinch points” or “impactos”, al-
though in many cases the membrane is fixed to these
points. In terms of the modelling of possible sliding,
this requires some type of contact analysis or fluid-
structure interaction.

3. Several researchers are experimenting with intentional
wrinkling and folding of the fabric to create new aes-
thetics as well as corrugations for buckling resistance.
This wrinkling is avoided in typical form-finding proce-
dures that seek to find minimal surfaces or surfaces of
mean zero curvature.

For the purposes of this research, the concrete pressure
was assumed to be hydrostatic and wrinkling was not con-
sidered. Contact analysis is of direct importance to the
modelling of more complex fabric-formed beams and was
taken into account.

5 Dynamic relaxation

Various form-finding algorithms exist that solve the shape
of tensioned membrane structures. The dynamic relax-
ation algorithm was used in this case [9, 10]. The method
of dynamic relaxation is a pseudo-dynamic process in
time which is used to solve static problems. In other
words, an analogy is drawn between the static solution of
a given problem and the equilibrium state of damped
structural motion. The algorithm was originally devised
for various structural problems and has since been exten-
sively applied to tensile structures as well.

In dynamic relaxation, a discretized shape is set in
motion by translating some external load P into an accel-
eration of the loaded nodes. This results in motion of the
nodes, an oscillation (Fig. 7) that will eventually reach sta-
tic equilibrium due to damping of the movements (Fig. 8).
The solution that has been reached is one of minimum po-
tential energy. The dynamic relaxation method was im-
proved by replacing the viscous damping with so-called
“kinetic damping” in which the kinetic energy of the
whole system is continuously checked for peaks. Whenev-
er such a peak in kinetic energy is detected, all motion is
arrested (velocities are set to zero) and the algorithm is
restarted at that geometry (Fig. 9). In general, the subse-
quent peaks decrease in value as equilibrium between the
external loads and the internal elastic strains is ultimately
achieved.

The following section explains the main formulae
and offers some additional information that was found
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Fig. 7. Undamped oscillations; adapted from Lewis [10]
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Fig. 8. Viscous damping with damped oscillations; adapted from Lewis [10]

‘7’ kinetic energy peaks

»
>

kinetic energy

.

L
number of iterations

Fig. 9. Kinetic damping with resetting at kinetic energy peaks; adapted from
Lewis [10]

necessary for the implementation. The authors have no-
ticed that Egs. (1) and (2) are also known as Leapfrog in-
tegration which is closely related to Verlet integration;
both are multi-step explicit integration methods for solv-
ing dynamic systems. The method equates the residual
forces R divided by the lumped mass m (which acts as a
stiffness) to nodal accelerations and subsequently deter-
mines nodal velocities and positions at each iteration:

t
V'(.t+At/2) _ V'(-t—At/Z) AL & 1)
j j m;
t+At t+At/2
5; )zxgj+At-Vi§+ /2 )

The lumped nodal masses m are a function of the elastic
and geometric stiffnesses of the connecting elements (7).
The time increment At is no more than a step size for the
algorithm. It provides a means of guaranteeing numerical
stability and determines the speed at which the algorithm
attempts to find a solution. The remaining unknown, the
residual, or out-of-balance, force vector R, is the sum of the
externally applied loads F and the internal member loads
due to tension stiffening for node 7 in direction j.

R(fmt) =Fij + §1 AR(HAt) (3)

1 zj,e
i,e=0

where the summation of residual forces consists of:

AR

t+4t)

(t+at) T (t+at)  (t+at)

ij LEJr A% T @)
for each element e. Note that during form-finding, the
residual force vectors should converge to zero until a state
of equilibrium is reached.
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The tension T is determined by the in-plane stiffness,
the strain and any initial prestressing.

T+ LL’ge (L(;“‘t) - Lg) + TP (5)
e

The actual material properties of the elements are not re-
quired for form-finding as long as the final stress values
are scaled in order to be physically valid. It was decided to
calculate the stiffness EA as the product of the linearized
modulus of elasticity Ey, the thickness of the fabric ¢ and
the inradius r of the neighbouring triangle elements, with
E; = 490 N/mm? and # = 0.76 mm based on a geotextile
fabric [2]. In other words, a cable-net analogy was used
which is quite common in membrane engineering and
simplifies the computations by modelling a continuum as
a network of bar elements.

At the end of each iteration, the kinetic energy of the
current structure is calculated according to conventional
mechanics.

E;(; w4) D % m; - (W“W 2))2 (6)

i

The algorithm converges under the condition that:

- the change in kinetic energy between iterations is suffi-
ciently small, and/or

- the change in displacement between iterations is suffi-
ciently small, or

- a maximum number of iterations is reached, i.e. the so-
lution was not convergent.

The nodal mass m will determine the inertia of each node
because it is subjected to forces. As the process of motion
is entirely fictitious, these values need not be realistic. It is
noted that the precise definition of these fictitious masses
is trivial because they only influence the degree of conver-
gence in each iteration, not the final geometry. However,
poorly defined masses may lead to divergence. The nodal
mass was defined as the sum of the elastic and geometric
stiffnesses:

A2
Ty

L, L| 2 L, L L

{EA s T] A2 [EA EAe TO} o)
e e
The inclusion of contact analysis with some of the rigid
parts of the mould had to be added to the algorithm. Spe-
cific checks were implemented to control fabric that folds
along rigid edges of the formwork. Elements that span
across an edge retain their correct length and use a tem-
porary third point at the edge as a reference to check this
(Fig. 10). In other words, an element is checked if it spans
over the edge. If so, the distances to the edge of the two
connecting nodes are used as the element length, not the
distance between these nodes. Nodes passing over the
edge stay within the plane of the fabric - which now folds
- and their residual force vector and velocity vector
change direction accordingly, using rotation (Fig. 11). The
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Fig. 10. Diagram of check and correction for elements that fold over the edge of the mould
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Fig. 11. Diagram of check and corrections for nodes that move over the edge of the mould
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Fig. 12. Design domain, variables and result of a keel mould; inset shows variables for a pinch mould

angle of the adjacent element currently spanning over the
edge can be used for this rotation.

The fabric formwork for a beam consists of several el-
ements that, in interaction, determine the ultimate shape
of the mould (Fig. 12). The following variables form the
target for optimization:

e The prestressing forces along the length of the fabric

e The edge shape along the top

e The keel shape along the bottom

e The width of the spacing strip

e The location and geometry of the pinch points (im-
pactos)

The first three variables - prestress, edge shape and keel
shape — were modelled as symmetric, four-degree (d = 4)
Bézier curves along the length of the span in the x direc-
tion (Fig. 12). The y value determines the magnitude of
the prestress, the width between the edges and the height
of the keel. For a four-degree Bézier curve, the formula is:

B(f)=Py(1-1)' +4P,(1-1) t+ 6P, (1- 1) 2 +

+4P;(1-1) 85+ Pyt e[0,1] (8)
where P; = (xd)
Ya

and due to symmetry xy = — X4, Yo = Va4, X1 = — X3, Y1 = V3
and due to the fixed, predefined length of the span
x0:—1/2L,x3:O

This means that only four variables, yq, x1, y1, ¥, re-
main to be described for each of the three symmetric Bézi-
er curves, resulting in a total of n = 12 variables for opti-
mization; these are renamed x; = (x4,.., %,). For the
extension to the pinch mould, the spacing strip, a single
value, was added later as the thirteenth variable. The
pinch points were defined as three quadrangles with four
sets of two coordinates and a certain depth to which they
impact the fabric. Each quadrangle was mirrored so that
there could be six pinch points in total. This resulted in 27
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additional variables, n = 40 in total, thus increasing the
complexity of the model considerably.

6  Structural analysis

Finite element analysis was used within the framework to
ensure a fully computational and automated approach.
The software application ANSYS was used for the finite el-
ement model of the resulting fabric-formed beams. The
fabric mesh is first translated into a volume mesh and
transferred to ANSYS for evaluation. In this analysis, each
beam is subjected to one load case consisting of an evenly
distributed load plus self-weight.

A flexible reinforcement strategy for longitudinal re-
inforcement was implemented and tested, but ultimately
not applied in the final results due to computational de-
mands. It was a necessary step, however, in order to
demonstrate the feasibility of incorporating non-linear ma-
terial behaviour in the overall optimization. The non-lin-
ear material behaviour of concrete and steel was modelled
with bilinear stress-strain curves. The reinforcement re-
quired was calculated using an approximation method for
non-rectangular cross-sections. This method assumes an
alternative stress-strain diagram using a fully plastic stress
distribution to avoid complicated calculations. The
method assumes two reductions to correct large devia-
tions from more accurately calculated results: the ultimate
stress is reduced to 0.95 - f'. and the depth of the com-
pression zone x to 0.80 - x (Fig. 13).

The reinforcement is calculated at mid-span and as-
sumes the use of passive prestressing steel because pre-
stressing tendons are ideal for following every possible
curvature of the beam. A smeared reinforcement model
provided by ANSYS, which averages the local amount of
reinforcement per element, is defined by three parameters:
the reinforcement ratio and the reinforcement orienta-
tion, defined by two angles. These values are calculated
for discrete sections along the beam and assumed to have
a concrete cover along the bottom. Other than the cover,
no check was implemented to evaluate the discrete sizing
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Fig. 13. Approximated stress distribution for non-linear analysis of concrete

Fig. 14. Change in strategy from ANSYS unstructured meshing (left) to approximated cubic meshing (right)

and positioning of the reinforcement. Note that the result-
ing reinforcement ratios are very low due to the high
strength of prestressing steel and therefore, with a discrete
model, cracking behaviour may be a relatively important
design issue.

For any calculation in finite elements, some type of
element mesh is required. ANSYS provides two kinds of
automated unstructured meshing algorithms for meshing
complex geometries. Both strategies were tested and ap-
plied to the beams that the framework automatically gen-
erates and sends to ANSYS for evaluation. Unfortunately,
both methods resulted in either a significant percentage of
poorly shaped elements despite mesh improvement algo-
rithms, or even failure to mesh the geometry at all. The
poorly shaped elements distort the analysis results and
therefore the total optimization process. It was decided to
approximate the geometry of the fabric formwork using
cubic elements of equal size, with the meshing pro-
grammed outside of ANSYS (Fig. 14), an approach similar
to that used in Bi-Directional Evolutionary Structural Op-
timization [11]. This results in a less accurate geometry,
but keeps the analysis stable and reliable at all times.

7  Optimization problem

The structural analysis is used to evaluate each fabric-
formed beam for a single load case of uniformly distrib-
uted load plus self-weight. A performance index [11] is cal-
culated as inversely proportional to strain energy x
volume. This means that the higher the stiffness of the
beam and the lower its volume, the higher the perfor-
mance will be rated. This induces material optimization
while retaining load resistance. As the strain energy is de-
termined by the size of the applied load, the results of the
optimization are influenced by the load. The results dis-
cussed below give an indication of the sensitivity. For non-
linear analysis, the external load is applied incrementally
after self-weight while integrating the performance index.
This ensures that the entire load history is taken into ac-
count while assessing the performance, rather than evalu-

ating the beam for some arbitrary load, thus reducing the
sensitivity of the performance index. No integration is
necessary for linear analysis, which reduces the computa-
tional demand. The optimization including the perfor-
mance index PI is:

minf(xj)zﬁzE; pV= _!‘J;STKSdth-p-V,

where xj= (xl, ...... ,X ) eR )
where

d displacements

K finite element stiffness matrix

n number of variables determining the shape (Fig. 12)

As explained, the mould is described in part by three Bézi-
er curves - for the shape of the keel, the edge and the mag-
nitude of the prestress — each determined by four coordi-
nates. The bound constraints allow these coordinates to
be within one domain distance outside the design domain
(e.g. Fig. 12, point Py ) in order to be able to describe a va-
riety of curves within the domain. Additional inequality
constraints guarantee that the resulting shape is cut off to
stay within the design domain. Indirectly, the form-finding
process itself is an equality constraint because it calculates
a unique fabric shape in each instance.

The upper and lower bounds d; ;y and d;; of the vari-
ables ; are described by the size of the design domain
h=08m,b=03m,L=9m and an ultimate prestress
Ty =40 kN/m [2]. The starting parameters for x;; o are ran-
domly generated according to Eq. (10) as discussed below.
For the pinch mould, the additional variables are all coor-
dinates within the design domain, constrained to avoid
overlap and retaining a quadrangular shape.

8 Evolutionary optimization
The overall process of form-finding, analysis and evalua-

tion has to be guided by a form of optimization towards
more optimal geometries. Algorithms already exist that
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aim to optimize structural material efficiency, but the re-
sults, often described as “organic” or “skeletal”, are costly
to build. To produce such complex forms, fabric formwork
is one option, but the possibilities this method offers come
with specific constraints due to the fabric involved. For
this reason, the use of a more general purpose optimiza-
tion algorithm was favoured. Differential evolution is such
an algorithm that has the flexibility needed to set up a pro-
gram that can include the form-finding process for fabrics,
and includes non-structural objectives when optimizing
for material efficiency, both continuous and discrete vari-
ables [12]. The reliability and convergence speed of differ-
ential evolution has been shown to be promising com-
pared with other general optimization algorithms [13].
Differential evolution belongs to the category of evo-
lutionary or genetic algorithms. Genetic algorithms use
concepts from biological evolution to create a mathemati-
cal method of optimization and frequently use the same
vocabulary. Evolution is the process by which different
kinds of living organisms have developed. In this particu-
lar case, a collection of fabric-formed beams can be equat-
ed to a generation of living organisms. The information
contained in the genes is nothing more than vectors con-
taining variables that describe the fabric formwork. A first
set, or generation, of beams is evaluated and those that ex-
hibit superior qualities have a higher likelihood of con-
tributing to the properties of a new generation of beams.
Each new beam is generated by combining the properties
of parent beams and changing some variables through
random mutation. Eventually, after many generations, ge-
netic algorithms find optimal or near optimal solutions. A
typical evolutionary algorithm undergoes the following
steps, which will be discussed in more detail in this order:
— Initialization
- Selection
- Mutation
- Recombination
- Evaluation
- Termination

The first population can be initialized by any uniform or
non-uniform distribution, depending on what is known in
advance about the (location of) optima. Nevertheless, a
uniform random distribution was chosen to demonstrate
the robustness of the entire framework. In this case, each
vector component j of beam i is chosen randomly between
its feasible lower and upper bounds U and L. The vector
components are the variables that determine the shape of
the formwork, as shown in Fig. 12.
Xj,;0=rand, (0,1) : (di,U - dj,L) +d; (10)
The size of the population is ideally quite large to cover
the range of the solution space, i.e. results in high vari-
ance. However, the population size was kept small due to
the computational requirements of the entire framework,
but this led to poor performance. The final tests were car-
ried out at a compromise of 50 beams per generation.
Selection may take place after evaluating the first
population. For each population member, or target vector,
three other vectors are selected to calculate a new recom-
bined trial vector against which the target vector is com-
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pared. The three other vectors are called the base vector
x,0 and the random vectors x,; and x,,. Mutually exclusive
indices are implemented to ensure that all four vectors are
different population members. In differential evolution,
the analogy with biological evolution becomes tenuous be-
cause in evolutionary terms it could be said that in this
case a child (trial) of three parents is compared with one
of the parents (target) for selection.

A degree of mutation is introduced at this point to
avoid convergence to local optima and to increase vari-
ance. This is achieved by adding the vector differences of
the random vectors to the base vector. It is from this strat-
egy that differential evolution derives its name. The scale
factor F, gives the weighted difference between the ran-
dom vectors, which added to the base vector gives the
mutant vector v (Eq. (11), Fig. 15):

Vg =%+ E - (x,l’g ) g) (11)

where the scale vector for each vector component j is:

F, = pow(mndi (o, 1),q) = rand; (0,1)q q = % -1

Discrete recombination, better known as crossover, is used
to combine two vectors at a crossover point at a vector in-
dex C. Vector components 0 to C-1 are taken from one vec-
tor and supplemented with components C to D-1 from the
other. The crossover factor Cr determines the probability
that crossover occurs (Eq. (12), Fig. 16):

My =1y = {Zj,i,g if (ran'di (0,1) <Crorj= jmnd) 12)

ji,g otherwise

A value of Cr = 0 produces minimum disruption because
few mutant components v;, are crossed, whereas Cr = 1
favours a high degree of components from v; , for the new
trial vector u; 4. A crossover factor Cr = 0.2 is standard, but
0.9-0.95 can be used for limited parameter dependence.
Low values proved to be more successful and reliable and
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Fig. 15. Projection of vector components x; and x, for randomly chosen
beams r; and r, in the solution space
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Fig. 16. Recombination from existing and mutant beams x;; , and v;; ; to generate trial beam u;; ;

most tests used Cr = 2/D. The last tests for the pinch
mould geometries showed a higher dependency on the pa-
rameters and therefore used Cr = 0.9.

There are various ways of selecting individuals to
form a new generation and to reproduce. Differential evo-
lution itself uses one-to-one survivor selection. In this
case, each parent (target vector &) with index i is com-
pared with the child (trial vector u) with the same index
(Eqg. (13)). The worst-performing vector is discarded. The
advantage is that, contrary to some other methods, the
best solution so far is always kept and no solution worse
than the worst-so-far is ever chosen. On the downside, this
means it is possible that a trial vector that is better than
most of the current population will be rejected if its target
is even better. It became clear that this in fact happens
very often in differential evolution. This is not an issue,
however, because this merely means that the population
will feature a few superior solutions that are the focus of
improvement while as a whole will never degrade.

. {ui,g if PI(u; ) < PI(x; ) 13)

X; g otherwise

There are various ways of specifying how the differential
evolution algorithm should stop, most obviously when im-
provement in the performance becomes minimal. How-
ever, in our case no termination criteria were defined, and
progress and termination of the algorithm was carried out
manually based on evaluation of continuous output. This
was done to avoid creating a black box because practical
development of this framework required constant evalua-
tion of the results and convergence behaviour as early as
possible, rather than waiting for some specific outcome of
arbitrary accuracy.

9 Results

The entire framework, including form-finding, finite ele-
ment analysis and optimization, is shown in Fig. 17 as a
flow chart. During development of the software, results
were continuously generated to improve the model. Initial

results pertained to the keel mould method, whereas final
tests were applied to the pinch mould. One result from
each method is shown here for discussion. The first exam-
ple of the keel mould is shown in Table 1 and Fig. 18. The
span of all examples is 9 m. The material models for both
fabric and concrete are isotropic, homogenous and linear
elastic.

Unfortunately, although the framework proved to be
functional, this early result is actually not very optimal. A
rectangular beam of equal volume and maximum depth
deflects less. This can be expected as the concentration of
material shown in Fig. 18 along the neutral axis counter-
acts the benefits of the curved longitudinal shape. The rea-
son for this result is that the performance index contains
two factors that have not been weighted. The reductions
in volume weighed heavier than the improvements in stiff-
ness. As the stiffness, calculated as strain energy, is depen-
dent on the load, a higher load would increase the relative
importance of stiffness and improve the results. Ideally,
the program should use non-linear analysis as discussed
because it would allow evaluation of the entire load histo-
ry up to failure. The strain energy would become a less
sensitive value because it would be based on the ultimate
load, not an arbitrarily chosen design load. However, due
to limits in computational power, it was decided simply to
increase the load during later trials. The effect of this was
visible because sections tended to become less slender.
One later result for the pinch mould is shown in Table 2
and Fig. 19.

This later result is a definite improvement, although
the distribution of the impact points is certainly not opti-
mal because we would expect a more optimal result to be
comparable with a truss, featuring several openings along
the neutral axis instead of merely two large ones. To inves-
tigate the potential material-savings of fabric-formed
beams, this result was compared with a conventional rec-
tangular beam and a beam with a parabolic, longitudinal
profile (Fig. 20).

Some optimum exists between the ratio #/h, be-
cause that would allow the beam to deal with both shear
forces and bending moments effectively. Some calcula-
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Fig. 17. Flow chart of FabricFormer framework

tions were performed in Maple to calculate the deflection
due to distributed loading for different values of h/h,.
The calculations are based on energy methods.

The expression for the potential energy for a beam in
bending with a uniformly distributed load is:

1
Epp=E +E,= | 5 M - [ qua (14)
Together with M = Elx and k(x) = - u,, this becomes
1 2
E = 5 IEI (uxx) dx — jqudx (15)
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Table 1. Results of linear analysis, test No. 33

Stiffness B65 E, 39394 N/mm?
Concrete volume \% 049 md
Mid-span cross-section A 0.102 m?
Maximum depth h 0.648 m
Average width/depth ratio  b,,/h = A/h? 024 (-
Average cross-sectional

area Agg=V/L=V/9 0.054 m?
External load and

averaged self-weight q=1500 + pgA e 2783 N/m
Deflection at mid-span S 5.0 mm

Fig. 18. Optimized result for keel mould method, test No. 33

Table 2. Results of linear analysis, test No. 82

Stiffness B25 E, 28485 N/mm?2
Concrete volume \% 049 ms
Mid-span cross-section A 0129 m?
Maximum depth h 0.675 m
Average width/depth ratio  b,e/h = A/h? 028 (-
Average cross-sectional

area Agg=V/L=V/9 0.054 m?
External load and

averaged self-weight q =4500 +pgAg,, 5780 N/m
Deflection at mid-span 1) 1.7 mm

Fig. 19. Optimized result for pinch mould method, test No. 82, and rendering

where the parabolically shaped beam is defined by

h(x)=iﬁ+h2(1—2;cJ(1+2;c) (16)
and
1= b{n() (17)
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hmax:hl +hZ
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I=9m

Fig. 20. Model of parabolic beam used for comparison

The displacement is assumed to be:

u(x)z ul(l— 2196)[1+2lxj+ uz(l _21x)2[1+2lxj2

This displacement function, assumed to be symmetrical,
consists of two parts (Ritz functions): a parabola with an
amplitude u; and a fourth-order polynomial with an am-
plitude u,. Both parts fulfil the kinematic boundary condi-
tions as required by the minimum potential energy
method. It is noted that this analysis does not provide the
exact solution to the beam deflection. A third part could
have been added to the displacement function but the im-
provement to the accuracy of the calculated deflections
would have been minmal.

For equilibrium, the potential energy needs to be sta-
tionary with respect to the deformation parameters.
Therefore:

(18)

oE oE

\ 4

The coefficients u; and u, are solved from the latter two
equations. The resulting equation is too long to be shown,
but gives the displacement as §=d(q, , E, b, h1, h5). The re-
sults of this equation for a beam with load, span and vol-
ume equal to those of the fabric-formed beam are plotted
in Fig. 21.

The plot reveals an optimum where deflection is
12 % less than that of a fully parabolic (%; = 0) or rectan-
gular beam (/5 = 0), from which we can conclude that the
optimum ratio /1/h, is about 4/6. Another interesting con-
clusion is that the difference in deflection of a parabolic
beam is a fraction lower — less than 1 % - than that of a
rectangular beam with an equal b/A,,,, ratio. The beam
corresponding to the optimum ratio 4/6 is used for com-
parison. The fabric-formed beam is loaded in ANSYS and
the resulting deflection is compared to the rectangular
and parabolic beams in Table 3. The analytical calculation
of the non-prismatic beam includes only bending deforma-
tion; therefore, shear deformation and local deformations
at the supports have been neglected. Due to the slender-

pot __ pot —
ou 0and ou, 0 (19a,b)  hess of the beam, the neglected deformations are expected
40
ss .
=~ "
~ 25 —~— — .
c
S 20
[&]
@
"5 I
T 15 — -
10 D
5 '
o S
0 1/9 2/8 3/7 4/6 1 6/4 7/3 8/2 9N inf.
h,/h, ratio
b/h=0 b/h=1/4  ====pb/h=1/2  e=—=p/h=3/4  e—]p/h=]

Fig. 21. Deflection of parabolic beam model depending on b/h and hy/h, ratios
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Table 3. Linear elastic comparison of beams of equal span and maximum
depth

Beam Volume at equal Deflection at equal
deflection volume

reference beam 100 % 100 %

parabolic beam 88 % 88 %

fabric-formed beam 42 % 42 %

to be very small. Clearly, the numerical computations do
include all the deformations possible.

The reduction in volume of the fabric-formed beam
is 58 %. The reason why both comparisons in Table 3
yield the same savings is that the depth and length are
kept constant, and therefore the volume is dependent on
one variable only, the width (V=06 x h x [ = b x const.),
and thus is linearly proportional to the deflection. The
comparison demonstrates that gains from optimizing the
longitudinal shape are smaller than those from optimiz-
ing the cross-section. From a structural point of view, the
pinch mould is far more interesting to develop than the
keel mould, although the latter is much simpler in terms
of formwork.

It is possible to compare these results with a theoret-
ical beam of equal cross-sectional area A that shifts all its
material to the outer fibres. This beam has two flanges
where the depth of the flanges #; approaches zero and the
width by infinity, and does not feature a web. Assuming A
to be constant, bh = bfhy. The moment of inertia, using the
parallel axis theorem, becomes:

I=1+Ad?= %bfh; + Ad? (20)

2
T 2 ol Ly (1) [Zlpps o3 Lpys
lim 1, =0+ 4d _2[21911 (2;1 = S bI® =320l (21)

The moment of inertia becomes 1/4 - bh3 as opposed to
1/12 - bh3, suggesting that for a prismatic beam in bending
the theoretical lower limit for the volume reduction at
equal depth and deflection will be 67 %.

10 Discussion

The emphasis of this research was on the principle of
combining optimization with manufacturability and the
computational framework in general as a proof of con-
cept, leaving room for development and verification of the
form-finding and analysis procedures.

The modelling of the fabric could be improved by in-
cluding biaxial and non-linear material behaviour, al-
though this is likely to be more appropriate at a later
stage after the general design of the beam has been decid-
ed upon. The type of meshing can be adjusted to approx-
imate better the fabric geometry and at the same time
provide a basis for the concrete volume mesh. Also, un-
structured meshing generators and refinement provided
by ANSYS could not cope adequately within an automat-
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ed process of random complex shapes. It is likely that if
simplified cubic meshes are to be avoided, a significant
challenge remains in terms of automated, flexible dis-
cretization, although commercially available mesh-less
methods show promise in this context. If the relatively
coarse cubic approach is retained, some error estimation
would be appropriate.

The analysis of the concrete can include multiple
load cases and also non-linear material behaviour to ac-
count for the reinforcement steel. As discussed, this may
also improve the determination of the performance index
and will have a positive effect on the overall optimization.
More generally, the current framework considers neither
the supporting framework for the fabric nor the require-
ments and design of the reinforcement, which is crucial
for assessing the added value of more complex formworks
such as the pinch mould. It would be worthwhile includ-
ing aspects of labour, production and transportation in the
model in order to compare fabric formworks fully with
conventional methods.

The authors believe that the most important im-
provements can be made in the parametric description of
complex moulds, e.g. pinch mould, and appropriate rein-
forcement. Related research into modern reinforcement is
the key in this respect. Flexible systems such as fibre and
textile reinforcement are prime candidates for combining
with fabric-formed concrete as well as the notion of the
fabric formwork itself functioning as reinforcement.

11  Conclusions

A computational framework has been created that com-
bines automatic structural optimization with manufactur-
ing constraints. It has been shown that using a general op-
timization algorithm allows these constraints to be
introduced directly. In this respect it differs from typical
examples of structural optimization that do not include
manufacturability or include it only after optimization is
complete, i.e. use some form of post-processing. This con-
ceptual framework contains specific algorithms for the
tasks of general optimization, fabric form-finding and con-
crete analysis which are independently interchangeable
with similar algorithms. The constraints from any other
manufacturing process could also be used in this frame-
work, replacing the form-finding procedure.

Furthermore, the flexibility of general optimization
algorithms allows non-structural objectives to be taken in-
to account. The framework could therefore be applied to
more appropriate, complex problems that include non-
structural objectives, and therefore have outcomes that
are relatively hard to predict based on a priori engineering
judgement.

The current optimization process converges towards
shapes with a higher performance, defined as the ratio of
stiffness to volume. Inclusion of non-linear material be-
haviour for the concrete has been discussed and tested,
but the computations proved to be too demanding within
the scope of this project to be used for the final results.
The final results show fabric-formed beams that are opti-
mized compared with prismatic beams of rectangular
cross-section as well as non-prismatic parabola-shaped
beams of rectangular cross-section, significantly reducing
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the amounts of concrete and steel required. The results ex-
plicitly include manufacturing information such as the
amount and shape of the fabric and distribution of pre-
stress.

12  Final remarks

The results of the optimization framework are not very
surprising and could easily have been designed by an engi-
neer as a target shape for traditional form-finding. So al-
lowing more user interaction is suggested for the further
development of design and analysis tools for fabric form-
works. An architect or engineer should be able to exert
more control over the geometry, preferably in a real-time,
parametric environment. This train of thought is the focus
of ongoing research on the computational design of fabric
formworks as part of the first author’s doctoral research
carried out at ETH Zurich. It is believed that such interac-
tive tools will contribute to fabric formwork achieving its
full potential, thus expanding architectural vocabulary
with new possibilities and ultimately transforming how
people view structural concrete.
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Notation

A surface area

a acceleration

B Bézier curve

b width

by  width of flange

Cr crossover factor

D dimension of vector

d limiting value

E; fabric stiffness

E;, Kkinetic energy

E, position energy, potential energy of external loads
E,ot potential energy

E’; deformation or strain energy

EA tension stiffness

EI bending stiffness

F  externally applied load

Fg scale factor

g gravity (9.81 N/kg)

h  depth

h;  flange thickness

I second moment of area
K  stiffness matrix

L  current element length
L, initial element length
I  span

M bending moment

m  lumped nodal mass

P point

PI performance index

q distributed load

bamx%ee<=\wﬂéﬂqm

residual force
tension

initial tension, or pretension
time

fabric thickness
trial vector
volume

velocity

mutation vector
base or trial vector
position vector
displacement
curvature

density
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