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Summary 

This paper discusses existing form finding methods in the context of a research project on fabric 
formworks. The stiffness matrix, force density, surface stress density and dynamic relaxation form 
finding methods are discussed by mathematically structuring and presenting them in the same way. 
Based on this, a single computational framework using a sparse branch-node data structure is 
presented. It is shown how each method defines the internal forces and stiffness of the network, 
both for linear elements and triangular surface elements, and which solver is used. This single 
framework marginalizes any differences related to operating platforms, programming language and 
style, offering a better baseline for comparison of performance. As an example, the minimal surface 
of a cable-net is calculated, followed by a comparison of the time and iterations required per 
method. Implications of these results and the framework itself are discussed. 
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1. Introduction 

The shape of form-active structures is not known a priori as it depends on the forces and thus 
requires a process called form finding or shape finding. Research into computational form finding 
took place as early as the 1960’s. Important strides in computational form finding were made in the 
70’s and served structural designs such as that of the seminal Munich Olympic stadium’s cable-net 
roof. Cable-net and tensioned membrane roofs, and later also pneumatic structures, (grid-) shells 
and tensegrity systems, prompted development of more refined methods. A recent application for 
form finding is not the design of a structural system but that of a construction method: fabric 
formwork technology [1]. This method has at its heart the concept of casting concrete or rammed 
earth in prestressed or hanging fabrics. However, computational form finding methods have not yet 
been specifically developed for fabric formworks, forming the background for this research.  

1.1 Existing methods and comparisons 

Existing form finding methods can be subdivided in three main families: force density methods, 
dynamic relaxation methods and stiffness matrix methods. Force density methods refer to all 
methods that use the concept of the ratio of force to length (or stress to surface area) as a central 
unit in the calculations. Dynamic relaxation methods use the analogy with motion, where residual 
forces are converted to velocities and the mass of the nodes determines acceleration. Stiffness 
matrix methods use real material stiffness matrices in the calculations. This last category may be the 



least well-defined, with no consensus on name and principal sources. Similar classifications are 
non-linear network computation [2], computer erecting [3], Newton-Raphson Iteration [4], non-
linear displacement analysis [5] and transient stiffness [6]. All these terms commonly refer to at 
least one reference by Haug et al., published in the period 1970-1972, and Argyris, Angelopoulos et 
al., published in the period 1970-1974. 

Some comparative overviews of form finding methods can be found [3-5], but these are mostly 
qualitative in nature and have become somewhat dated. Barnes [4] does compare the storage 
requirements of dynamic relaxation and stiffness matrix methods per iteration and quotes required 
numbers of iterations, concluding the dynamic relaxation to be favourable. Lewis [6,7] compared 
the computational cost of the same two methods for various configurations of cable nets. The 
conclusion was that the stiffness matrix method did not converge for one of the examples and that 
dynamic relaxation had lower total computational cost for examples with more degrees of freedom.  

Despite almost half a century of literature on form finding methods, thorough comparisons remain 
rare. Subsequently, it is generally unclear to what extent these methods differ and in which cases 
one may be preferable over another, specifically whether certain form finding methods are more 
suited to the particularities of fabric formwork. Compounding this problem is the divide between 
researchers focusing on particular methods, in spite of them setting similar goals. Comparison is not 
straightforward as a variety of nomenclatures, mathematical structuring and notation is used.  

2. Formulation of a single framework 

As a basis for comparison, a single framework using a sparse branch-node data structure, as used in 
[2], is presented for the three form finding methods. Their implementation in the framework is 
based on selected, seminal references (force density (FD) [2, 8], dynamic relaxation (DR) [4,9] and 
stiffness matrix (SM) [10-12]).  The mathematical notation used in this paper is as follows: italics 
represent scalars, bold lower-case letters represent vectors and bold upper-case letters represent 
MATRICES. Where applicable, the formulation is given for linear elements on the left hand side 
(e.g. for cable nets) and triangular surface elements on the right hand (e.g. for membrane structures).  

Assuming Newton-Raphson’s method as the non-linear solver, one iteration in all three methods can 
be defined as: 

   1T T 1 T 1
t+1 t t f t;f

     x x C KC p C L FCx C L FC x (1) 

where x are the coordinates, K are the branch stiffnesses, p are the external loads, L are the branch 
lengths and F are the forces. The branch-node matrices C and Cf contain the connectivity of the 
network of either m branches or f triangular faces, with n free nodes and nf fixed nodes respectively. 
Each free node has three degrees of freedom (dof’s), one for each direction. Table 1 shows the size 
of the branch node matrices C in the equation, depending on the method and element type used.  

Next, the background of Equation 1 is discussed (in 2.1) followed by its input: the stiffness K (in 
2.2) and the ratio of forces to length L-1F (in 2.3). Finally in 2.4, it is discussed how Equation 1 
changes when using solvers other than Newton-Raphson’s method.  

2.1 Static equilibrium 

A general network, not in equilibrium, has 
residual forces r (resultants on each node), 
defined as the difference between the 
internal forces f and external loads p.  

 r p f  (2) 
 

Table 1: Size of the branch-node matrices depending on   

method and use for multiplication with F or K 

Type of element Forces F Stiffness K Stiffness K 

method DR, FD, SM DR, FD SM 

linear (m,n) (m,n) (3·m,3·n) 

triangular (3·f,n) (3·f,n) (9·f,3·n) 



When f = p there is equilibrium. Therefore, any solving strategy minimizes the residual forces r to 
achieve static equilibrium. Applying Hooke’s Law for the residual forces, the stiffness K is 
introduced. Note that K is the derivative of the forces r as a function of the displacements ∆x. 

 1 1      x K r K p f (3) 

With the known geometry at time step t, the new geometry will be:  
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
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(4) 

Equation 4 is the same as Equation 1, but Equation 1 clarifies how the entire network can be 
computed through simple matrix operations using the branch-node matrices. 

2.2 Stiffness K 

The stiffness K of the elements is the sum of the elastic stiffness Ke and geometric stiffness Kg and 
shown for linear [10] and triangular elements [12]. In the case of stiffness matrix methods: 
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where EA is the branch stiffness, L0 is the initial branch length, I3 is a diagonal identity matrix, A∆ is 
the triangle surface area, t is the triangle thickness, D is the plane stress constitutive matrix and T is 
a transformation matrix. The transformation matrix T consists of multiple matrices for which the 
reader is referred to either [12] or [13]. G is a matrix of the direction cosines, which are the ratios of 
the three coordinate differences u to the length L of each branch.  

The computational cost of the stiffness matrix K can be reduced by lumping the stiffness [9, 14]. 
This results in a single value per node, giving us the stiffness K for the dynamic relaxation method: 
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where σ0 is the isotropic stress. To even further simplify the stiffness, the elastic stiffness can be 
disregarded entirely while assuming a constant value for the force F or for the geometric stiffness 
F/L. The latter is known as the force density Q [2] or constant tension coefficient [4] as with force 
and surface stress density methods: 

(1,1) const.  
F

K Q
L  

(9a) 
(3,3) const.



  K I I
σ

Q
A  

(9b) 

2.3 Element forces F 

Form finding requires the prescription of forces and/or unstressed lengths. The force F, based on the 
elastic stiffness EA, unstressed length L0 and pretension F0 can be defined in the case of stiffness 
matrix [11] and dynamic relaxation methods [9]: 
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where ε is the strain formulation for the triangle [13]. Alternatively, using a constant force density 
[2], the forces are: 
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When the lengths L0 are unknown, they are calculated by combining Equations 10a and 11a. 
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The original force density formulation [2] is obtained by combining Equations 1, 9a and 11a and 
setting D=CTQC and Df=CTQCf:  

       1 1

t+1 t t f t;f f t;f

      x x D p Dx D x D p D x (13) 

2.4 Solvers 

Stiffness matrix methods typically use Newton-Raphson iterations (Equation 1), or modified 
procedures in which the initial stiffness matrix is held as constant. When using the modified 
procedure as well as when using the lumped stiffness in dynamic relaxation, K is no longer the 
derivative of the residual forces r as a function of the displacements ∆x, and therefore the solver is 
more akin to the simpler Euler method. Dynamic relaxation additionally introduces a two-step 
method known as Leapfrog integration, where information from the previous iteration is retained 
and reused. Introducing the velocity v and step size h, Equation 4 becomes:  

   1

t t 1


   v v K p fh (14) 

t 1 t t   x x vh  (15)

The simple Euler method can be extended in three ways: using information of the derivatives such 
as with Newton-Raphson (multiderivative), using information from multiple previous iterations as 
with Leapfrog (multistep), and/or including multiple calculations per iteration to refine the 
prediction for the next step (multistage). A form finding method strongly related to dynamic 
relaxation, called the particle spring system [15], implements such a multistage method, a classic 
fourth-order Runge Kutta [16] for reasons of stability. 

3. Minimal surface 

As an example of the framework 
presented here, the stiffness matrix, 
dynamic relaxation with viscous and 
kinetic damping [9] and force density 
methods are compared by form finding a 
hyperbolic paraboloid cable-net (Figure 1) 
with fixed boundaries. Three mesh sizes 
are computed, with an increasing number 
of degrees of freedom (3 per node): 
n=3x3, 27 dof’s (Figure 1), n=7x7, 147 dof’s and n=15x15, 675 dof’s. The form finding starts from 
an initially flat net (Table 2). 

As a first trial, trivial input parameters are used: Q=1, EA=F0=1 and all unstressed lengths L0 are 
equal. The solution is considered to have converged when the squared sum of all residual forces 
changes by less than 1% between iterations, or when the residual forces are 0. The forces in the 
results are normalized to their average for comparison (fnorm=f/Favg).  

   
  Fig. 1: Normalized forces fnorm for Q=1, or EA=Fo=1 



With these particular input values, the resulting force distribution of all three methods was found to 
be identical (Fig. 1). In this case, the force density method remains linear and solves the problem 
the fastest, after one ‘iteration’.  

In a second calculation, the goal was to 
find a minimal surface by specifying a 
constant force throughout the network. 
The input parameters are: F=1 and EA=0. 
Initially the same convergence criterion 
is chosen. The smallest squared length 
LTL (the most minimal surface) found is 
then used as a new convergence criterion 
to make sure that each result is equal in 
lengths and has uniform force 
distribution (Fig. 2). The average 
duration to converge for 100 trials per 
method is normalized to the minimum for 
comparison (tnorm=t/tmin). 

Dynamic relaxation performs 
increasingly better at more degrees of 
freedom. Note that the stiffness matrix 
method also becomes more unstable 
requiring increasing use of controls as 
discussed in [10]. The lesser performance 
of dynamic relaxation with viscous 
damping in most, but not all cases, seems 
to be related to the influence of the initial 
net (the relative length of the edge 
branches differs for each of the three 
meshes) and the greater stability that is 
commonly attributed to kinetic damping. 
The relative difference in time between 
stiffness matrix and dynamic relaxation 
methods compares well with results from 

Lewis [7] (factor 2.2 at 36 dof’s), however in her case viscous damping performs better and the 
number of iterations is much higher. These differences can be attributed to her example starting 
from a different net (less susceptible to instability), and having an external load p and EA≠0. 

4. Conclusions 

The single framework presented here allows the direct comparison of different form finding 
methods. The mathematical formulation provides insight in how the internal forces and stiffness of 
the network are calculated with each method and which parameters can be used to control the 
calculations. This in turn can be used to decide which method is most appropriate for particular 
applications and goals. The framework offers a basis for extending these methods to other element 
types, material models and solvers. It also allows hybrid solutions combining strengths of different 
methods.  

An example of the results that this framework can generate demonstrates which method is most 
suitable for a particular case in terms of the necessary computational time. Further application to 
other situations will provide information on the general convergence and stability of these methods.  

 
Fig. 2: Normalized forces fnorm for Q=1, or F=1 and EA=0 
 
Table 2: Duration of form finding and number of iterations 

 
Initial 

net 
 

Result 

 
dof’s  = 27 dof’s = 147 dof’s  = 675 

Method 
time tnorm 

(iterations)  
time tnorm 

(iterations) 
time tnorm 

(iterations) 

SM 1.66  (10) 13.2 (17) 29.8 (63) 

DRvis. 1.23  (11) 1.00 (19) 1.35 (91) 

DRkin. 1.00  (15) 1.67 (25) 1.00 (39) 

FD 1.07  (10) 2.40 (13) 3.20 (35) 

tmin (s) 0.003 0.006 0.15 



This framework has been created in the context of development of an appropriate form finding 
method for fabric formwork technology. Future research will focus on applying this framework to 
the particulars of fabric formwork, for example by evaluating form finding methods when 
incorporating aspects such as external concrete pressures, fabric wrinkling and sliding support 
conditions. More generally, this framework can provide new research in form finding a starting 
point for assessment of existing methods and the benchmarking of new methods. 
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