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This paper discusses and compares existing form finding methods for discrete networks. Well-known
methods such as the force density method, dynamic relaxation, updated reference strategy and others
are discussed by mathematically structuring and presenting them in the same way, using the same nota-
tion and combining terminology. Based on this, a single computational framework using a sparse branch-
node data structure is presented. It is shown how each method approaches the initial equilibrium prob-
lem, defines and linearizes the equilibrium equations applied to linear elements, and uses particular solv-
ing strategies. This framework marginalizes any differences related to operating platforms, programming
language and style, offering a better baseline for independent comparison of performance and results. As
a consequence, it is possible to more clearly relate, distinguish and compare existing methods, allow for
hybrid methods and identify new avenues for research.
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1. Introduction

The principle of form follows force is particularly relevant in
structures that transfer their loads purely through axial or in-plane
forces. In these cases where no bending occurs, shape is deter-
mined by forces and vice versa. Examples of discrete structures fol-
lowing this principle include unstrained gridshells (compression),
cable-nets (tension) and tensegrity (both). These form-active
shapes are not known in advance, and therefore require a form
finding process. Early examples of form finding using physical mod-
els include the hanging chain models by Antoni Gaudi and hanging
membranes of Heinz Isler. Since the 1960s, and with the advent of
the computer age, research has focused on developing numerical
methods, initially applied to the design of cable-net roofs. Despite
almost half a century of literature on numerical form finding meth-
ods, thorough comparisons remain rare. Subsequently, it is gener-
ally unclear to what extent these methods differ and in which cases
one may be preferable over another. Compounding this problem is
the apparent divide between researchers focusing on particular
methods, in spite of them setting similar goals. Comparison is
not straightforward as a variety of nomenclatures, mathematical
structuring and notation is used. The authors have previously ad-
dressed this problem (Veenendaal and Block, 2011), simulta-
neously with, but independently of Basso and Del Grosso (2011),
who focused on recent methods derived from the force density
method.
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1.1. Objective

The objective of this paper is to compare existing form finding
methods for discrete networks and identify key distinctions. In or-
der to achieve this, well-known methods are presented in a single
mathematical formulation and implemented in the same computa-
tional framework. For this paper, the framework is applied to un-
loaded, self-stressed networks.

1.2. Outline

An overview will be given of form finding in Section 2, starting
with the definition. A categorization and chronology of existing
methods for self-stressed networks is presented. Based on litera-
ture review and results of this paper, three main families of meth-
ods are distinguished. Existing reviews and comparisons found in
literature are discussed as a preamble to our own comparison
framework. In Section 3, existing, well-known form finding meth-
ods are presented in a single notation while combining their
respective terminologies, revealing many equivalencies. Seven dis-
tinct methods have been identified and implemented in our frame-
work for computational comparison. An overview of key
differences between (categories of) methods and a comparative ta-
ble of equations are provided, subsequently explained in more de-
tail. These differences can be viewed as decisions in our framework
to arrive at specific methods. Section 4 discusses three extended
approaches from literature for networks with a non-uniform force
distribution. Three examples are shown in Section 5: a uniform
force network comparing all seven methods; a non-uniform force
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network comparing the three extended approaches; and a minimal
surface compared to uniform force and force-density networks and
to results from the membrane/cable-net analogy.

2. Form finding

Before presenting the framework, a definition of form finding is
given (Section 2.1 and a categorization of form finding methods is
proposed (Section 2.2). A brief survey of existing reviews (Sec-
tion 2.3) with a summary of common criticisms (Section 2.4) and
and existing comparisons (Section 2.5) are given.

2.1. Definition (s)

The design process by which the shape of form-active structures
and systems is determined is widely called either form finding or
shape finding. Adapted from Lewis (2003), the definition of form
finding is:

Finding an (optimal) shape of a [form-active structure] that is in
(or approximates) a state of static equilibrium.

Such a definition is generally accepted and used, but has been crit-
icized by Haber and Abel (1982) for not acknowledging the fact that
in many cases the stresses cannot be imposed and are, like the
shape, also unknown. Instead, they suggest calling the problem of
form finding the initial equilibrium problem. Sensitive to this issue,
recent works by Bletzinger et al. (e.g. Dieringer, 2010) typically offer
variations of the following, narrower definition of form finding:

Finding a shape of equilibrium of forces in a given boundary
with respect to a certain stress state.

Over the past decade, a new notion of form finding has necessitated
the distinction between classical and modern form finding, to
acknowledge additional constraints. Some recent definitions of
modern form finding are much broader: “finding an appropriate
architectural and structural shape” (Coenders and Bosia, 2006), or
“a structural optimisation process which uses the nodal coordinates
as variables” (Basso and Del Grosso, 2011).

2.2. Methods and categorization

In the last five decades several methods of form finding have
been developed (Fig. 1). Earlier methods were typically applied
to discrete cable-net structures and extended by later methods to
surface elements for membrane structures (denoted by triangles
in Fig. 1). It is possible to categorize these in three main families:

o Stiffness matrix methods are based on using the standard elastic
and geometric stiffness matrices. These methods are among the
oldest form finding methods, and are adapted from structural
analysis.

Geometric stiffness methods are material independent, with only
a geometric stiffness. In several cases, starting with the force
density method, the ratio of force to length is a central unit in
the mathematics. Several later methods are presented as gener-
alizations or extensions of the force density method (Haber and
Abel, 1982; Bletzinger and Ramm, 1999; Pauletti and Pimenta,
2008), independent of element type, often discussing prescrip-
tion of forces rather than force densities.

Dynamic equilibrium methods solve the problem of dynamic
equilibrium to arrive at a steady-state solution, equivalent to
the static solution of static equilibrium.

Note that our categorization is similar to recent work by
Bletzinger (2011). The category of stiffness matrix methods may

be the least well-defined, with no consensus on name and principal
sources. Similar classifications of these methods are (in chronolog-
ical order): non-linear network computation (Schek, 1974), com-
puter erecting (Linkwitz, 1976), Newton-Raphson iteration
(Barnes, 1977), non-linear displacement analysis (Haber and Abel,
1982) and transient stiffness (Lewis, 2003). Each of these classifica-
tions refer to at least one reference by Haug et al., published in the
period 1970-1972 (e.g. Haug and Powell, 1972), and Argyris, Ange-
lopoulos et al., published in the period 1970-1974 (e.g. Argyris
et al.,, 1974).

The methods in Fig. 1 that first developed a formulation with
(triangular) surface elements are applied to discrete networks in
this paper. Each of these methods also give the case for discrete
cable elements and/or cable-nets (Haber and Abel, 1982; Barnes
and Wakefield, 1984; Tabarrok and Qin, 1992; Singer, 1995; Mau-
rin and Motro, 1998; Bletzinger and Ramm, 1999; Pauletti and
Pimenta, 2008). The work by Tabarrok and Qin (1992) was applied
to examples of cable-reinforced membrane structures instead of
cable-nets.

2.3. Existing reviews

Comprehensive reviews of form finding methods can be found
(Haber and Abel, 1982; Basso and Del Grosso, 2011; Linkwitz,
1976; Barnes, 1977; Tan, 1989; Meek and Xia, 1999; Nouri-Barang-
er, 2004; Lewis, 2008; Tibert and Pellegrino, 2003), although differ-
ent in scope, for example focusing only on tension structures or
tensegrity. Several references have become somewhat dated. Some
do not offer critical comments and serve purely as non-compara-
tive reviews (Basso and Del Grosso, 2011; Linkwitz, 1976; Meek
and Xia, 1999). In other cases, they serve merely as an introduction
for a method put forward by the author (s) (Haber and Abel, 1982;
Nouri-Baranger, 2004; Lewis, 2008).

2.4. Common criticisms

A summary of existing criticisms found in literature is provided
here, by category. These criticisms do not necessarily reflect the
opinion of the authors.

Stiffness matrix methods include material properties, which is
unnecessary, computationally costly, and may lead to difficulty in
control of (stable) convergence (Haber and Abel, 1982; Barnes,
1977; Nouri-Baranger, 2004; Lewis, 2008).

Geometric stiffness methods applied in their linear form, produce
results that are not constructionally practicable (Barnes, 1977) and
can serve only as a preliminary result. Linear results of the force
density method are dependent on mesh density and anisotropy.
Additional iterations are necessary (Tan, 1989) for uniform or geo-
desic networks (Barnes, 1977; Lewis, 2008) or shape dependent
loading (Haber and Abel, 1982), making the method non-linear
(however, the authors argue that this is inherent to these particular
applications and not a disadvantage of the method). Force densities
or geometric stiffnesses are not meaningful or intuitive quantities
(Haber and Abel, 1982; Tan, 1989; Nouri-Baranger, 2004), making
it difficult to predict the outcome for a prescribed set of force den-
sities (the authors note that newer methods often focus on strate-
gies to deal with this, prescribing forces rather than force
densities).

Dynamic equilibrium methods require too many parameters,
such as the time step, to control stability and convergence
(Nouri-Baranger, 2004) (the authors note this can be reduced to
a single damping parameter and often to a trivial value for the time
step At = 1). The mass and damping parameters are also fictitious,
and have no physical representation (Nouri-Baranger, 2004) and
may therefore not be meaningful.
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Fig. 1. Development and categorization of form finding methods with key references. Arrows denote descendence, dotted lines denote independent but related methods and

triangles a first formulation using surface elements.

2.5. Existing comparisons

There are very few sources that compare the actual perfor-
mance and results of different methods. Barnes (1977) compared
the storage and operation requirements of dynamic relaxation
and stiffness matrix methods per iteration and quotes required
numbers of iterations, concluding dynamic relaxation to be favour-
able in the case of cable networks. This was further demonstrated
by Lewis (2003, 1989) who compared several configurations of
cable nets. The conclusion was that the stiffness matrix method
did not converge for one of the examples and that dynamic relax-
ation had lower total computational cost for examples with many
degrees of freedom.

3. Framework

The framework presented here uses a single data structure and
mathematical notation, thus exposing key differences between
methods. These differences appear as choices within the frame-
work (Fig. 2, Table 1), or in the form of different equations
(Table 2).

Following a certain string of choices leads to one of seven par-
ticular methods (Table 1). The most fundamental decision is be-
tween three apparent ways in which these methods solve the
initial equilibrium problem, i.e. the method of regularization, de-
scribed in Section 3.2. Another decision is the type of incremental
formulation, discussed in Section 3.3.

The rest of Section 3 provides information about the implemen-
tation of the framework. Section 3.5 defines static equilibrium and
discusses linearization as a first step towards a solution. The core of
any implemented method is characterized by the definitions of

(Section 3.7-8)

Table 1

Methods implemented in this paper, with corresponding choices made in the
framework (Fig. 2). Choices in blue denote fundamental approaches in regularization
(see Section 3.2). (See below mentioned reference for further information.)

Method Choices
Stiffness matrix method (SM) 1.3.2.1a.1
(Siev and Eidelman, 1964; Haug and Powell, 1972; Argyris et al.,

1974; Tabarrok and Qin, 1992)
Force density method (FDM) 1.3.1.1b.0
(Linkwitz and Schek, 1971)
Multi-step force-density method with force adjustment (MFDF)  1.1.1.1b.1
(Sanchez et al., 2007; Maurin and Motro, 1997)
Geometric stiffness method (GSM) 1.1.2a.1b.1
(Haber and Abel, 1982; Bletzinger and Ramm, 1999;
Nouri-Baranger, 2002, 2004; Pauletti and Pimenta, 2008)
Updated reference strategy with homotopy mapping (URSywm ) 1.2.2a.1.1
(Bletzinger and Ramm, 1999)
Dynamic relaxation (DR) 2.3.2.2a.2
(Barnes, 1988; Barnes, 1999)
Particle spring system (PS) 2.3.2.2b.2

(Kilian and Ochsendorf, 2005)

force densities q and the stiffness and/or mass matrices, K and
M, which are provided for each method in Table 2. The equations
in Table 2 are explained in more detail as follows: the data struc-
ture and discretization of the geometry in Section 3.4; the forces
and force densities in Section 3.6 ; and the stiffness and mass in
Sections 3.7 and 3.8. Different solving strategies and possible con-
vergence criteria are given in Sections 3.9 and 3.10.

Lists of abbreviations and variables are provided in the
Appendices A and B. The mathematical notation in this paper is

tiffness and/or mass Solving strategy

(Section 3.9-10)

stiffness (and forces) defined in

la. actual configuration (Eq. 23)
and/or

1b. reference configuration (Eq. 25)

0. linear (Eq. 31)

non-linear
la. Newton (Eq. 30)
1b. etc.

Problem Formulation Force (density) S
(Section 3.5)  (Section 3.3) (Section 3.6)
1. static 1. Updated 1. force density ¢
Lagrangian
Formulation
2a. force f, (Eq. 14)
2. Homotopy and/or
Mapping 2b. elasticity EAe (Eq. 14)
2c. spring k(L-L) (Eq. 15)
2. dynamic 3. Total
Lagrangian
Formulation

masses based on

2a. greatest direct stiffness (Eq. 28)
or

2b. prescribed values

non-linear (dynamic)

2a. Leapfrog (Eq. 32) with viscous damping
2b. Leapfrog (Eq. 32) with kinetic damping
2¢. RK4 (Eq. 33) with spring damping

2d. etc.

Fig. 2. Overview of the framework’s critical choices (and Section 3) leading to different methods. Choices in blue denote fundamental approaches in regularization (see
Section 3.2). (For interpretation of reference to color in this figure legend, the reader is referred to the web version of this article.)
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Table 2
Overview of force densities, global stiffness and mass per method.
Method q[mx1] Eq. K [n; x ;) Eq. M [n; x ny] Eq.
SM L 'fy, + (14) CIL'FG; - CUPLKC (23)
L 'EAe + CIUL%L;'EAG
FDM q QG (26)
MFDF L, o (17) CILIFC; (27)
GSM Lo (17) CIL, FC; (27)
URSkm L 'fo(ks) + (18) CIL'FC;(%s) — CTUPL3FCGi(Js) (25)
Leatfo(1 = ) CILAFCi(1 — %)
DR L'fy + (14) 8;CILTFG; (28)
L'EAe 6;CI Ly "EAC;
PS L'fy + (15) CIL7'FG; - CULEG M

L'(L-Loks +
L7'CVe_ar2UL 'Ky

+ ULk

as follows: italics represent scalars, bold lower-case letters repre-
sent vectors and bold upper-case letters represent matrices. An
upper-case version of a letter denoting a vector is the diagonal ma-
trix of that vector.

3.1. Implemented methods

Seven distinct methods have been implemented which apply to
the form finding of networks of cables, rods or bars. Table 1 lists
each of these methods and corresponding key references. The table
also shows choices in our framework necessary to arrive at that
particular method.

Note that the authors concluded that the references for SM are
largely equivalent. Haug-Powell’s method (Haug and Powell, 1972)
is a 3D extension of Siev-Eidelman’s, or grid method (Siev and Eid-
elman, 1964), and natural shape finding (NSF) (Argyris et al., 1974)
originally operated by displacing supports from a flat state.

The references for GSM have also been concluded to be concep-
tually equivalent methods: assumed geometric stiffness method
(GSM) (Haber and Abel, 1982; Nouri-Baranger, 2002, 2004), updated
reference strategy (URS) (Bletzinger and Ramm, 1999) and the
natural force density method (NFDM) (Pauletti and Pimenta, 2008).

3.2. Regularization

The problem of form finding, expressed as a purely geometrical
problem “is singular with respect to tangential shape variations”
(Bletzinger and Ramm, 1999). This means that, for example, in
the axis of a minimal-length cable nothing governs the position
of intermediate nodes and no unique solution exists unless some
method of regularization is used. There are three ways to solve
the initial equilibrium problem (appearing in blue in Fig. 2 and Ta-
ble 1), also discussed by Bletzinger (2011):

1. materialize the problem by adding elastic stiffness;

2. solve for forces in the (updated) reference configuration; or

3. solve for the analogous, dynamic steady-state solution with
diagonal mass (and damping) matrices.

3.3. Formulation

There are two common incremental formulations for non-lin-
ear, large displacement analysis, the Total Lagrangian Formulation
(TLF) and the Updated Lagrangian Formulation (ULF). They deter-
mine how the forces and stiffnesses at each increment are calcu-
lated. These formulations are applied in form finding methods.
URS offers a mixed formulation of the two, called homotopy map-
ping (HM).

In TLF the variables are referred to the initial configuration I'y,
whereas in ULF they are referred to a reference configuration I'fe,
updated in each step from the last calculated actual, or viable con-
figuration TI'. Fig. 3 visualizes the three formulations. HM intro-
duces factor is which determines, for each step, how the forces,
referred to the (updated) reference configuration and the actual
configuration, are interpolated. This approach results in an inner
and outer loop, with inherently different convergence criteria.

The following observations are made:

o Existing stiffness matrix and dynamic equilibrium methods use
TLF.

e Force density and geometric stiffness methods in linear form
use TLF. In non-linear form they use ULF.

e URS has a unique mixed formulation, HM, which reverts to ULF
if all /5 are zero.

In this paper SM is also combined with ULF, which stabilizes the
method. Furthermore, for URSyy;, the reference configuration was
updated at each iteration (not just each step), removing the inner
loops, which improved overall convergence speed.

3.4. Data structure and discretization

Throughout our framework, regardless of the form finding
method, a branch-node matrix C is used to describe the topology
of a network I' of bars and nodes (Schek, 1974; Fenves and Branin
Jr., 1963).

Note that the transpose of C is defined as the incidence matrix
in graph theory (Bondy and Murty, 1976), and the incidence matrix
in turn has been compared to standard approaches in the finite ele-
ment method to assemble stiffness matrices (Christensen, 1988).

For a network with m branches and n nodes in three-dimen-
sional space a [3m x 3n] branch-node matrix is constructed (Link-
witz, 1999):

C
C= C (1)

C

where the entries of the ith row and jth column of the [m x n] subm-
atrix C are:

+1 if node j is the head of branch i
C;j=1{ —1 if node j is the tail of branch i

0 otherwise

Note that the direction of the branch vectors may be chosen arbi-
trarily. Furthermore, the use of three submatrices C, one for each
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Total Lagrangian Formulation (TLF)
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Fig. 3. Total and Updated Lagrangrian Formulations, and Homotopy Mapping, with
iterations t and steps s, and corresponding convergence criteria in red. (For
interpretation of reference to color in this figure legend, the reader is referred to the
web version of this article.)

dimension, is done for later convenience, to avoid triple equations
or equations with triple terms.
The [3n x 1] nodal coordinate vector X is:

X X = (X1,X2, ..., Xn)"
X= y = y:(y]7y27"'7yn)—r (2)
z Z=(21,22,....2)"

where X,y and z are vectors containing n coordinates in Cartesian
directions. For later application, the n nodes are declared to be
either interior (i.e. free) or fixed nodes. Note that this may differ
in each direction if, for example, a node is fixed in x direction but
free to move in y direction. In our case, the nodes are assumed to
be either interior or fixed in all directions, with n = n; + n;. The 3n
columns of the branch-node matrix C and the 3n rows of the nodal
coordinate vector X are resequenced accordingly:

C=[C (] 3)

where C; is a [3m x 3n;] branch-node matrix for the interior nodes
and G is a [3m x 3ns] branch-node matrix for the fixed nodes.

.l (4)

Xs

X =

where X; is a [3n; x 1] coordinate vector of the interior nodes and Xy
is a [3n; x 1] vector of the fixed nodes. The coordinate difference
vector u can be written as a function of C and the coordinate vector
X:

=Cx (5)

[
Il
S < g

where u, v and w are vectors, each containing m coordinate differ-
ences in corresponding Cartesian direction. With U, U,V and W, the
diagonal matrices of u,u,v and w, the branch lengths L are:

L
L= L (6)

with

L= (0% + V2 +W2)

3.5. Equilibrium and linearization

In this Section the equilibrium of the network and linearization
is discussed, characterized by three new quantities: force densities
q, stiffness matrix K and mass matrix M. Their definition for differ-
ent methods is discussed in subsequent Sections 3.6, 3.7 and 3.8,
and summarized in Table 2.

The network is in a state of equilibrium if the sum of the exter-
nal loads p and internal forces at all nodes is zero. Writing the
internal forces in terms of the branch forces g as a function of coor-
dinate differences u we obtain (Linkwitz, 1999):

p-Cigu =0 (7)

Typically this system of non-linear equilibrium equations is solved
by linearization with a first order Taylor expansion, i.e. Newton’s
method, with respect to change in position x, Ax (Linkwitz, 1999):

CJ,(x)Ax = p - C/g(u) (8)

where J,(X) is the Jacobian of the branch forces g with respect to the
nodal coordinates x. By convention the resulting LHS matrix and
RHS vector in Eq. (8) are called the stiffness matrix K (see for each
method Table 2) and and the (residual) force vector r:

KAX=r 9)

which is commonly known as Hooke’s Law.

Note that deriving this equilibrium equation from the principles
of virtual work and minimum total potential energy has been
shown in general (Haber and Abel, 1982; Bletzinger and Ramm,
1999) and specifically for bar elements (Bletzinger and Ramm,
1999; Tabarrok and Qin, 1992). These sources show subsequent
linearization as well, but this has also been specifically explained
with the use of the branch-node matrix C (Singer, 1995; Linkwitz,
1999).

When considered as a dynamic problem, Eq. (7) can also be lin-
earized with a first order Taylor expansion, with respect to change
in velocity v, Av, over time interval At:

T2 0, Y = p - ) (10

where J,(v) is the Jacobian of the branch forces g with respect to the
nodal velocities v. The LHS matrix is the mass matrix M (see for
each method Table 2):

Av
M—=r 11
which is commonly known as Newton’s Second Law.

This paper focuses on unloaded, self-stressed networks, so the
external load vector p = 0. The m element forces f are decomposed
into the forces g(u) in each direction using the direction vector, or
direction cosines UL™' (sometimes expressed in angles).

C
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g(u) = UL'f (12)

Using Egs. (5), (8) and (12), and with p = 0, the n; nodal residual
forces r are:

r=-CUL'f = —C[L'FCx (13)

in which the ratios L™'f are commonly known as force densities q
(Schek, 1974), or tension coefficients (Barnes, 1977).

3.6. Forces and force densities

The forces in a network of elastic bars are determined by an ini-
tial stress and an elastic term. Written as force-to-length ratios, i.e.
force densities or tension coefficients:

q=L"'f=q,+q =L "'fo+ L 'EAc (14)

where prescribed forces fo = Aoy and strains ¢ = Lgl(l—lo). The
first term q, is a function of initial (Cauchy) stresses gy, cross-sec-
tions A and actual lengths L. The second term q, is a function of
elasticities or Young’s moduli E, cross-sections A, strains ¢, actual
lengths vector 1 and the initial lengths, or rest lengths, Ly, or as a
vector ly.

The bar can also be modelled as a spring, in which case spring
constants k; are equivalent to the diagonal of L;'EA and damping
forces are introduced as well. According to Baraff and Witkin
(1998), “the damping force should depend on the component of
the system’s velocity”. The damping force in the springs is calcu-
lated from the nodal velocities v using the branch-node matrix C;
and decomposed using the direction cosines UL™". The force densi-
ties for springs are:

q=L"fo+L (L - Lok + L *CV, a;2Uky (15)

where k; are damping constants and v;_,» the nodal velocities at
time t — At/2. The first term has been added here by the authors
to apply PS to constant force networks. Note also that for zero-length
springs, the second term reduces to constant force densities of value
K;. The third term vanishes as a steady-state is approached.

For the geometric stiffness methods, material independence is
assumed (see Section 3.6.1) and only the first term in Eq. 14
remains:

q=q,=L'f, (16)

One can prescribe either forces or force densities. In linear FDM the
force densities q are simply prescribed constants, often a trivial va-
lue, e.g. q = 1. In non-linear form, the reference configuration is up-
dated at each step s. The resulting modified force density q,,4, using
the updated reference lengths Ly, is then:

4 = Qpoq = Ligifo (17)

When using HM, one effectively interpolates between Egs. (16) and
(17). The force density q at each (inner) iteration t is:

q= ;“ng + (] - }“S)qmod (18)

The factor A; = 0 for the first (outer) step, then usually increasing
rapidly towards the original problem with a factor /4, = 0.9 for later
steps (Bletzinger and Ramm, 1999). If /4, = O for each step, i.e. using
only the modified problem, the method is equivalent to GSM.

Regardless of the definition of the force densities, whether con-
stant or otherwise, the residual force vector r of the entire network
can be calculated using Eq. (13).

The force densities for each method are shown in the first col-
umn of Table 2.

3.6.1. Material independence

The problem of form finding is in principle a geometric one, and
thus material independent. Indeed, Argyris et al. (1974) do
acknowledge that “it is possible to develop a shape finding method
[...] which does not consider the elastic properties of the struc-
ture”. Tabarrok and Qin (1992) assume that for form finding “the
membrane has a very small Young’s modulus”. For GSM, Haber
and Abel (1982) confirm that any value for E is acceptable, but
for simplicity is set to zero. Similarly, for DR, Barnes (1999) pre-
scribes only a constant tension and no elasticity when searching
for geodesic networks.

There is an important consequence of material independence.
After convergence, the m initial lengths L, can be (re-) calculated
based on m desired forces f (Argyris et al., 1974), and/or the m de-
sired stiffnesses EA, without disturbing the state of equilibrium
(Griindig et al., 2000):

Lo=LEA'F+I")" (19)

where I is an identity matrix.

3.6.2. Comparison of MFDF and GSM

MFDF was recently proposed (Sanchez et al., 2007), but its cen-
tral premise was already given by Maurin and Motro (1997). The
force densities are updated at each step s based on the updated
geometry I':

Q1 = QSF;]fO = L;}FrefF;e]ffO = L;elffo (20)

GSM considers the problem from a continuum mechanical point of
view:

Qrnod = LietASo = LitAG) = L ifo (21)

The forces f, are prescribed as a function of 2nd Piola-Kirchhoff
stresses Sy in the reference configuration instead of Cauchy stresses
g of the actual configuration. GSM assumes these two stresses to
be equivalent at each step. This assumption is valid when converg-
ing to a state of equilibrium, where both configurations and thus
both stresses become identical.

After rewriting, Eq. (20) is identical to Eq. (21) per iteration. The
distinction is that MFDF starts from prescribed force densities q, as
input whereas GSM from prescribed forces f, and initial lengths L.
Of course, these initial values influence convergence, depending on
which start closer to the final solution.

3.7. Stiffness

The stiffness of a bar element is typically decomposed in two
terms: a geometric stiffness K, and an elastic stiffness K. (Haug
and Powell, 1972; Knudson and Scordelis, 1972; Argyris et al.,
1974). The former describes the bar’s resistance to lateral loading,
and the latter the elongation of the bar under load. Using the
branch-node formulation, the stiffnesses are:

K=K, +K. (22)
where,

K; = C/L'FC; — CU°L°L 'FC; (23a)
K. = C/UL %L, 'EAC; (23b)

The bar can also be modelled as a spring where L;'EA1 =k, and
L 'f =L '(L - Lok (see Table 2).
With Eq. (14) and f, = 0, it is possible to rewrite Eq. (23):

K; = C'L"'FC; (24a)

K. = C/U’L L 'EAG; (24b)
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This solution has been previously derived in branch-node formula-
tion by Linkwitz (1999). Setting each elasticity E = 0, the geometric
stiffness remains, which written in the reference configuration is:

K = Koq = C/L{FC; (25)

Replacing the force densities with constant values leads to the ori-
ginal formulation of FDM:

K = C/QC (26)
When applying HM, Egs. (23a) and (25) are interpolated:
K= 4K; + (1 — 45)Kmod (27)

The stiffness matrices for each method are shown in the second col-
umn of Table 2.

3.8. Mass

DR uses lumped nodal masses, derived from the element stiff-
nesses. From Eqs. (9) and (11) we can see that within a time inter-
val At, it is indeed possible to relate the concepts of mass and
stifness. DR defines the masses as the greatest possible, direct stiff-
ness for each node, to deal with large displacements during form
finding (Barnes and Wakefield, 1984; Barnes, 1999):

2
M= ATt(sl,-(c,TL*ch,- +C/L,"EAC) (28)
1 izi
where 6,-}-:{ 1 l ]
0 if i#j

A computationally more efficient implementation for Eq. (28) is:
AP po 1
m:T\Ci (L F+L, EA)1 (29)

Because the resulting masses are diagonal matrices, or vectors, DR
has been called a vector-based method. The benefit of this is that
inverting the diagonal M to solve for Av is significantly easier and
faster than inverting a non-diagonal stiffness matrix K to solve for
AX. Interestingly, Barnes (1999) does not draw a firm conclusion
on whether conventional stiffness matrices or lumped masses offer
the greatest benefit for convergence.

In PS, the masses M are simply prescribed.

The mass matrices for each method are shown in the third col-
umn of Table 2.

3.9. Converging to equilibrium

For non-linear, iterative methods, using Eq. (9), a common solv-
ing procedure at each iteration is:

Xier1 = Xir + AXie (30a)

X1 =X +K'r (30b)
In linear FDM, the force densities are set as constant values q. So,
using Eqgs. (13) and (26), Eq. (30b) can be rewritten and solved di-
rectly (Schek, 1974):

Xiey1 = Xi¢e + D; ' (~DiX;, — DyXy)
Xier1 = Dy (~Dyxy)
where D; = C/QC; and Dy = C{QC;. Note that the solution is inde-
pendent of the initial coordinates x;;.

Stating the problem as dynamic equilibrium, using Eq. (11), we
obtain the following iteration at time t in centred finite difference
form (Barnes, 1999) for DR:

Veiata = Vearz + AV (32a)
Viiaz = Vioayz + AMT'r (32b)
Xitrae = Xir + AlVieiar2 (32¢)

where At is the time step. Note the similarity in form between Eqs.
(30) and (32). The solving procedure in DR is also known as Leapfrog
integration, and is analogous to (Velocity) Verlet integration. Damp-
ing is introduced by either viscous damping (Barnes, 1988) (con-
trolled by one parameter) or kinetic damping (Barnes, 1999)
(automatic). In PS, a typical implementation uses either explicit
classic 4th order Runge-Kutta (RK4) or implicit Backward Euler
(BE). The procedure for RK4 replaces (32b):

K(t,x;) = M~'r(t, X)) (33a)
Kk = Atk(t,X;;) (33b)
k, = Atk (t + %At, Xir + %lq) (33¢)
k; = Atk <t + %At, Xir + %lﬁ) (33d)
ky = Atk(t + At X + K3) (33e)
Va2 = Vioay2 +%(k1 + 2K, + 2k; + ky) (33f)

For BE, the procedure derived by Baraff and Witkin (1998) includes
the stiffness matrix K and a Jacobian matrix of the damping forces
with respect to velocities, J(v):

J(v) = —kiGi (34)

Damping occurs through the damping forces (Eq. (15)) controlled
by damping coefficient k4, and through a drag coefficient b. Prior
to Eq. (32c), the procedure is:

BAv, =c (35a)
B =M — AtClJ(v) — At’K (35b)
C = AH(r + AtKv,_¢)2) (35¢)
Veiatz = Va2 + B '(c— bvi_at2) (35d)

To solve the linear system of equations at each iteration in all of
these methods, Cholesky decomposition has been used in this pa-
per. Several sources apply some form of the Conjugate Gradient
method Brakke, 1992; Baraff and Witkin, 1998; Maurin and Motro,
2001, and GSM discusses Jacobi and Gauss-Seidel’s method (Haber
and Abel, 1982).

3.10. Convergence criteria

To determine convergence, the authors mention the following
options, where the first three are adapted from Lewis (2003):

1. small values of residual forces (||r|| < €);

2. small variations in the displacements between successive itera-
tions (|[X;11 — X|| < €);

3. small variations in the total length of the bars, between succes-
sive iterations (|1 — L.¢|| < €);

4. small values of the normal strain (||LH — 1| < €), or

. small values of the kinetic energy (H%VzmH < €), and/or

6. maximum number of iterations, steps (t < tmax,S < Smax) OT
duration of computational time reached.

w

Note that criteria 2-5 can each be expressed as a function of the
change in position ||AX||. This paper uses criteria 1 and/or 4
depending on the formulation with tolerance € = 1e-3, and crite-
rion 6 for specific cases. Example 1 (see Section 5.1) also uses the
total length of the elements as a criterion to compare when meth-
ods achieve the same level of accuracy.
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4. Non-uniform forces and force densities

In Section 3.6 it became clear that form finding typically re-
quires either the presciption of forces or force densities in a net-
work to obtain the shape in equilibrium. Without prior
experience in form finding, a straightforward approach would then
be to prescribe a trivial value (e.g. 1) for either forces f or force den-
sities q. Schek’s two theorems (Schek, 1974) state that the resulting
shapes correspond respectively to (I) unloaded nets with a minimal
sum of lengths and (II) unloaded nets with a minimal sum of
squared lengths (weighted by q), illustrated by Maurin and Motro
(1997).

However, resulting networks may be impractical, requiring
force distributions that are unknown and not straightforward to
prescribe. In this Section, methods to obtain shapes with either
non-uniform force, or force density distributions are discussed.
This is possible by including additional geometrical constraints in
an optimzation problem (see Section 4.1), by reintroducing elastic-
ity (see Section 4.2), or by providing geometrical control over
deformation during form finding (see Sections 4.3 and 4.4).

4.1. Constrained problems

In cases where additional constraints are known, a minimiza-
tion problem may be formulated subject to those constraints. Opti-
mization then determines the required stress state. Often some or
all information is known about the required shape. Several exam-
ples employ a non-linear least squares method: cable-nets con-
strained by fixed (initial) lengths (Schek, 1974), feasible
tensegrity structures (Zhang and Ohsaki, 2006) or target surfaces
for cable-nets (Knudson and Scordelis, 1972; Ohyama and Kawa-
mata, 1972; Arcaro and Klinka, 2009; Van Mele and Block, 2011).
The last two references, for example, use Gauss—Newton algorithm
and the more advanced Levenberg-Marquardt algorithm,
respectively.

4.2. Elastic control

In the case of a geometry with prescribed initial lengths Ly,
Barnes (1999) suggests in DR to prescribe real stiffnesses EA for
the interior branches with force density controlled boundaries.
This is also the case for SM with TLF, effectively turning the form
finding method into an analysis method. DR’s use of elasticity is
analogous to prescribing spring constants ks and rest lengths Loy
in PS.

4.3. Control strings

For high point membranes, peak stresses may occur at the top,
due to increasing radial stresses. Similarly, stresses towards the top
of cable-nets may increase or decrease depending on the mesh lay-
out. To automatically grade membrane stresses along the radial
lines, Barnes (1999) describes control strings, which “govern [...]
the plane of the surface but have no effect normal to the surface”.
The strings are force density controlled and their out-of-plane
component, normal to the surface, is suppressed. This method
has been applied to a discrete network in Section 5.2.

4.4. Element size control

URS introduces element size control to adapt surface stresses
automatically during form finding if an isotropic stress state is
not possible (Wiichner and Bletzinger, 2005; Linhard, 2009). Stres-
ses are altered once a critical deformation is reached. The method
is presented in the context of membranes and is adapted to line

elements for this paper. The upper and lower bound of the allow-
able deformation is controlled by a single parameter o/, With re-
spect to an initial or a maximum allowable configuration. The
deformation is tracked using the determinant of the deformation
gradient, «, at each iteration, which for line elements simplifies to:

= Lol (36)

In this case, the prescribed forces f are then scaled depending on the
deformation. For each branch i, wherei=1,... ,m:
fisu :fii (37)
where,

Olmax lf O > Olmax
O =< 1/0max if o < 1/0tmax (38)

o otherwise

However, oscillatory or even divergent behaviour has been reported
when using element size control, though the user can limit the
number of form finding steps to just a few (Linhard, 2009). This is
because in original URS each step produces a viable configuration
and after only a few steps the result is likely to be satisfactory. In-
deed, one linear GSM or URS step may prove sufficient.

5. Examples

The framework presented here is applied to three examples. The
first is a saddle-shape minimal-length net, to compare the perfor-
mance of several form finding methods when prescribing constant
forces. The second is a high-point net, where constant forces are no
longer possible, and previous methods do not apply directly. The
resulting shape and forces from three possible approaches are
compared. In the third and last example a minimal surface
(Scherk’s first surface) is compared to a minimal-length (constant
force) net and a minimal squared length (constant force density)
net.

5.1. Example 1: Saddle

To compare the performance of different methods, a saddle
shape with constant forces f =1 and fixed boundaries is sought.
The dimensions in are 10 x 10 with a height of 5 (Fig. 4).

Two version of DR have been tested, one with viscous damping
DR,;s (Barnes, 1988), one with kinetic damping DR,;, (Barnes,
1999). Three versions of PS were tested, one with viscous damping
and RK4, PSgya.vis, 0ne with spring damping and RK4, PSgks and one
with spring damping and BE, PSge. For DR, for each element the
stiffness EA = 0. For PS parameters ks, k; and b were all set to 0.5.
Time step At =1, except for PSges Where At = 0.2 (changed to
avoid instability) and masses m = 1, except PSgisvis Where m = 2
(changed to avoid instability).

Table 3 shows the time and iterations required to solve the
problem, for increasing degrees of freedom (dof’s). Note that the
resulting durations have been normalized with respect to the min-
imum solving time, tpom = fg‘r;:"

These results were obtained after an initial calculation was per-
formed with a fixed tolerance € = 1e3 for their respective conver-
gence criteria (Fig. 3). The largest sum of lengths XL was then taken
as an entirely new convergence criterium in order to objectively
compare the convergence of the methods for a result of equal accu-
racy. Each method was executed 100 times and these results were
averaged. The standard deviation of all results consistently ranged
between 9% and 11%.

Fig. 5 shows the computational time needed depending on the
degrees of freedom (dof’s), plotted on a log-log scale. Appearing
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—_—1 )

form finding

Fig. 4. Form finding of saddle with 543 dof’s.

Table 3
Normalized duration t,,m of form finding and number of iterations (t), best result in
bold.

dof's 75 183 339 543

SM 1.25 (8) N/A N/A N/A
SMutr 1.44 (13) 422 (16) 6.26 (18) 9.93 (17)
MEFDF 1.00 (14) 1.00 (16) 1.00 (18) 1.00 (17)
GSM 1.52 (16) 2.64 (15) 3.77 (14) 3.73 (13)
URShm 1.38 (10) 3.13(8) 431(9) 5.36 (8)
DRy 122 (8) 5.40 (34) 15.54 (63) 24.66 (96)
DRyin 1.41 (16) 5.19 (32) 10.36 (42) 13.16 (50)
PSricavis 1.78 (17) 3.68 (22) 6.74 (28) 11.30 (50)
PSra 4.10 (39) 6.58 (39) 13.57 (60) 22.73 (67)
PSg: 6.31(37) 11.30 (32) 14.44 (30) 20.33 (30)
Ein [5] 0.007 0.015 0.026 0.040

>L [m] 117.66 176.16 235.11 293.47

as lines, the required time for all methods seems to exhibit polyno-
mial growth O(n¢) with ¢ > 0. MFDF is even approximately linearly
dependent on the dof’s.

For SM, the standard method did not converge for 183 dof’s and
above (see Table 3), which agrees with Lewis (1989), who noted
that “for a structure with 189 degrees of freedom, any realistic lim-
its of computer time would have been exceeded, unless steps to
treat the numerical ill-conditioning are taken” and that without
doing so, SM “shows a strong exponential relationship [O(c")]
between the CPU time and the size of the problem considered”.
However, after introducing an elasticity EA = 1 for each element

——SMyr
—&—MFDF
—B—GSM
—%—URS,y
—%—DR,,
—e—DR,;,
PSRKA{\:N
PSpya
—|-PS,,

0.5

0.05

CPU time [s]

0.005

50 100

and ULF, the adapted method SMy;r showed polynomial growth
O(n®) as well. Surprisingly, it is superior to DR in this case and re-
quires a roughly constant number of iterations. PS with either expli-
cit RK4 or implicit BE did not show fast convergence overall, but
these methods were developed for cloth animation, which has more
constraints, and allows shear and bending behaviour. From Fig. 5 it
can be seen that the latter does start overtaking other dynamic
methods at higher dof’s. This is consistent with Baraff and Witkin
(1998) who report implicit solvers to be faster than explicit ones,
based on examples with at least 2602 nodes (presumably 7806
dof’s).

Based on these results, MFDF would seem to be the fastest
method for the form finding of minimal-length nets in this range
of dof’s. As noted in Section 3.6, its advantage is explained by the
fact that it automatically starts with one force density-controlled
iteration before becoming force-controlled. The other methods
start directly from the prescribed forces meaning they are depen-
dent on the initial geometry, in our case a flat net (Fig. 4). Notice
the nearly constant number of iterations for the geometry and/or
updated reference based methods SMyir, MFDF, GSM and URSyy,
but also the implicit dynamic PSgg. URSyy exhibits the lowest num-
ber of iterations needed. This suggests that for implementations
with high cost per iteration (e.g. with higher order elements),
URSym could potentially be faster than GSM and MFDF within this
range of dof’s, especially when starting with a force density con-
trolled-iteration.

5.2. Example 2: High point

For a high-point net, the forces are no longer constant and vary
towards the top. If constant forces are imposed throughout the net-
work, elements tend to deform such that no practical solution is
found. This means that the methods from the previous example,
each based on prescribed forces, become impractical as well. To
cope with this situation, several approaches have been discussed
(see Section 4). In this example, three approaches in which the
deformation of the elements is controlled are discussed: the simple
case of FDM with orthotropic force densities; orthotropic forces
using control strings (see Section 4.3); and orthotropic forces
applying element size control (see Section 4.4). In these examples,
t is the ratio of radial forces to tangential forces t = F, Ifoyrad, or the
radial to tangential force densities t = Q5]q07,ad.

The initial geometry of this example is a cone, cut off at the top.
The top radius of the cone is 2, the bottom is 10 and it has a height
of 5. The top and bottom edges form fixed boundaries.

Fig. 6 shows typical results of FDM. In the example on the right,
the force density is twice as high in the radial links as the

dynamic
methods

- } SMype

geometric
methods

200 400 800

Degrees of freedom (dof)

Fig. 5. Comparison of the efficiency of methods.
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YL=414 s=1
YL>=587 0.009s

YL=452 s=1
L2 =625 0.009s

Fig. 6. FDM with force density ratiost=1or t = 2.

tangential links. Observe that both radial and tangential link forces
decrease smoothly towards the top.

In Fig. 7 control strings are present along the radial direction. A
practical value of the control string force density is q. = Fot. In
these results, the tangential forces remain as prescribed, so the
same value throughout. By combining GSM (or URS with A = 0)
with element size control (see Section 4.4), the results from
Fig. 8 are obtained. The maximum allowable configuration is cho-
sen to be the actual configuration from the first linear step. The top
two examples in Fig. 8 converged after three steps for sufficiently
small normal strain ||L{l1—1|| < ¢, where ¢ = 1e-3. The bottom
two examples in Fig. 8 are obtained after prescribing five steps
(smax = 5) and feature a more evenly spaced mesh. The force distri-
bution seems to fall in between the extremes offered by FDM and
DR with control strings, as the tangential link forces range from
nearly equal after three steps to graded after five steps.

From these results, it is clear that the force distribution and
therefore shape obtained depends on the method. Therefore,
whether one result is preferable depends entirely on the user
and the context of the problem.

In terms of the numerical approach, it is noted that DR with
control strings requires a large amount of iterations to converge.

GSM with element size control exhibited oscillatory behaviour
for values opmax # 1 in Eq. (37), similar to that reported by Linhard
(2009). In those cases, the prescribed forces are only altered out-
side a certain range of allowable deformation. An additional relax-
ation parameter (Linhard, 2009) led to eventual, but slow
convergence and impractical force distributions. Instead, if
omax = 1 as in Fig. 8, the prescribed force is always recalculated.

The numerical drawbacks observed in the latter two methods
seem to indicate why commercial applications often simply rely
on linear solutions. This suggests that there is room to develop a
more stable and robust control method in the future, in which
the user can more freely explore this range of equally feasible
solutions.

5.3. Example 3a: Scherk’s first surface

This example is used to compare constant force and constant
force density networks to a minimal surface. The drawbacks of

f,=05,q =Ft R
t=

4, o —
XSS
A A B

YL =425 t=432
YL2=597 2.84s

YL=476 t=188
YL*=681 1.28s

Fig. 7. DR;s with control strings and force ratiost=1 or t = 2.

f
t

YL=366 s=3
SL2 =660 0.023s

YL=448 s=3
SL>=641 0.023s

YL=452 s=5
YL2=640 0.041s

YL=485 s=5
SL2=696 0.042s

Fig. 8. GSM with element size control, force ratios t=1 or t=2, with 3 or 5 steps
and oy = 1.

the membrane analogy used to relate a surface to a network are
also discussed. A minimal surface is often the basis for the design
of tensile structures. Fig. 9a-c show the results of a comparison
between:

e a minimal-length net with f; = 1 (min. ZL) using MFDF;

o a minimal squared length net with q = 1 (min. XL?) using FDM;

e a network following the minimal surface (Scherk’s surface)
(min. ZA).

The same topology and boundary conditions are used. The initial
geometry is a network with a square orthogonal grid in plan of
7 x . The minimal-length net implodes and does not properly
converge, so for Fig. 9a the number of iterations was fixed at 20.
The FDM solution in 9b shows a similar grading of forces as the
previous example of FDM (Fig. 6). The network in Fig. 9c is
obtained by projecting the initial geometry onto the Scherk’s sur-
face. The height field, providing the coordinates, is:

1 log (cos ax) (39)

Ta cos ay

Z(x.y)

with a = 0.98. The resulting required lengths L, are then used to
calculate force densities at each step:

q,., = LiLq, (40)

Fig. 9a-c demonstrate that both shape and force distribution of
the three networks are not the same. Thus, care is required when
using any form finding method for a particular application or to-
wards a particular desired outcome (see also Section 4).

5.4. Example 3b: Membrane and cable-net analogy

The result from Section 5.3 begs the question whether networks
can be used to properly model surfaces and surface stresses. In fact,
the cable-net analogy, deriving stresses from branch forces, has a
long tradition in the engineering of tensioned membrane struc-
tures (Strébel, 1995; Griindig et al., 2000). Here, the branch forces
f are treated as local resultant forces using the local average mesh
width, or representative width, thus obtaining surface stresses.
Fig. 9d demonstrates the force distribution found through the in-
verse membrane analogy (Buchholdt et al., 1968) with uniform
surface stress.
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(a) minimal length
constant force

(b) minimal squared length
constant force density

(c) minimal surface

(d) membrane analogy (e) principal curvatures

(MFDF) (FDM) - P
SL=164 s=20 SL=197 s=1 YL=186 s=291

YL2=488 0.02s SL2=252 0.004s YL2=298 1.18s

SA=414 TA=432 TA=40.2

Fig. 9. Minimal-length net (a), minimal squared length net (b) and minimal Scherk’s surface (c) with the same boundary conditions. Incorrect forces obtained from the
membrane analogy (d) compared with lines of principal curvature (e) as an indicator for an optimal analogous mesh.

When comparing to Fig. 9c to 9d the forces obtained differ.
Therefore, the analogy fails to correctly model the surface.

Because the cable-net cannot model the shear stresses of a
membrane (Maurin and Motro, 1998), it is only capable of model-
ling an isotropic surface stress if the cables follow lines of principal
curvature. In that case the normal stresses coincide with the prin-
cipal stresses (no shear). Indeed, the cable-net analogy, though
common enough in practice, has been criticized because of its
dependence on the mesh density and topology, as well as produc-
ing a “stress state in the fabric [...] that is not based on established
theoretical calculation” (Nouri-Baranger, 2004).

So, to properly model the surface, the topology should adapt
such that the link elements approximately follow these principal
curvatures (Fig. 9e). Alternatively, one could simply use surface
elements instead of bar elements.

6. Conclusions

The unifying framework presented in this paper allows for and
demonstrates the direct comparison of a wide range of different
form finding methods. By presenting methods in the same manner
and carrying out an extensive review of literature, the following
specific observations were made:

o Key differences and similarities between (categories of) meth-
ods have been identified (see Fig. 2).

e Methods that use elastic stiffness matrices do not differ funda-
mentally from one another, and it is acceptable to view them as
a single method, as has been done in the past under varying
names. Specific features, unique to particular references, are
mentioned in Section 3.

e Methods purely based on geometric stiffness, such as GSM, URS
(with 4 = 0), MFDF and NFDM are largely identical.

e MFDF's central premise (Eq. (20)) was already proposed by
Maurin and Motro (1997).

o MFDF’s advantage (in our examples) is explained as a starting
from an FDM solution, independent of the initial configuration.

Through the examples in Section 5 some additional insights were
possible:

e For the form finding of minimal-length nets, MFDF is the most
efficient numerical method to apply (of the methods and exam-
ples that were compared). Overall, geometric methods are supe-
rior to elastic stiffness and dynamic methods.

e For the form finding of nets with non-uniform forces, one can
apply FDM or extend the other methods. This leads to a wide
range of equally feasible shapes. Because no unique solution

exists, none of these methods are superior per se. If information
on the initial geometry is available, elasticity can be involved to
find the corresponding unique static solution. If additional geo-
metric constraints for the final geometry are known, optimiza-
tion methods can be applied.

e For the form finding of networks following minimal surfaces,
the cable-net analogy cannot be applied in a straightforward
manner.

More generally, the framework provides for three functions:

Didactic instrument: The use of a single type of mathematical
formulation provides insight in how each method fundamentally
solves the initial equilibrium problem and which parameters are
used to control the calculations. In particular, the use of matrix
algebra and application to simple, unloaded and self-stressed net-
works provides an easily reproducible description of these meth-
ods. In this way, the framework can also act as a stepping stone,
either between literature on methods that are traditionally viewed
as vastly different, or towards methods that are commonly seen as
difficult to grasp. It may lead to greater understanding and appre-
ciation of such methods, and emphasize their particular contribu-
tions. In a similar fashion, the framework offers a basis for
extension to more complex element types, material models and
solvers, which is the direction of the authors’ future work.

Objective comparison and choice: The choice between methods is
generally not straightforward, due to the lack of objective, compre-
hensive reviews and comparisons. By structuring and presenting
methods using the same discretization and branch-node data
structure, differences related to mathematical notation, operating
platforms, programming language and style are marginalized. This
offers a better baseline for independent comparison of perfor-
mance and results, enabling one to make more informed decisions
when choosing between methods.

Development of new and hybrid methods: By examining the rela-
tion between methods and how they solve the initial equilibrium
problem, it may occur to the reader where new possibilities lie
for future development of new approaches. The framework allows
hybrid solutions combining strengths of existing methods. This po-
tential is already demonstrated by three examples: combining the
stiffness matrix methods (SM) with an updated Lagrangian formu-
lation (ULF) for greater stability, updating the reference configura-
tion at each iteration (not just each step) in the updated reference
strategy (URSyy) for more competitive convergence, and combin-
ing the particle-spring system (PS) with viscous damping. As
shown, some independent but largely identical developments oc-
curred, sometimes decades apart. This framework may avoid such
needless repetition and allow future research to be directed to-
wards entirely new discoveries.
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Appendix A. List of abbreviations

BE backward Euler method

DR dynamic relaxation

FDM  force density method

GSM  assumed geometric stiffness method
HM homotopy mapping

kin kinetic damping

MFDF  multi-step force-density method with force
adjustment

NFDM natural force density method

NSF natural shape finding

PS particle spring system

RK4 classic 4th-order Runge Kutta method

SM stiffness matrix method

TLF total Lagrangian formulation

ULF updated Lagrangian formulation
URS updated reference strategy
vis viscous damping

Appendix B. List of variables

Variables in both lower- and upper-case denote vectors and
their corresponding diagonal matrices.

null vector

ones vector

vector with two for each entry
allowable deformation parameter
network in actual configuration
network in initial configuration
network in reference configuration
Kronecker delta

t change in time t, or time step

\ s changes in velocity v

X changes in position x

Cauchy strains

convergence tolerance

Js homotopy factor at step s

0o initial Cauchy stresses

aA cross-sectional areas

b drag coefficient

C [3m x 3n] branch-node matrix

C; [3m x 3ny] branch-node matrix for fixed nodes
(¢ [3m x 3n;] branch-node matrix for interior/free
nodes

._‘
o
LY

S>> N=O

C [m x n] branch-node matrix for a network
D; [3n; x 3n;] matrix C] QC;

D¢ [3n; x 3n;] matrix C] QC;

E Young’s moduli

f F actual branch forces

fo,Fo initial/prescribed branch forces

f..r,Fof reference branch forces

g(u) branch forces decomposed in three-dimensions

I identity matrix

J0) Jacobian matrix of a function i with respect to a
vector j

k increment vector for RK4 as a function of t and x;

kq, Ky damping constant (s)

ks, Ks spring constant (s)

K stiffness matrix

K. elastic stiffness matrix

K, geometric stiffness matrix

Kinod modified stiffness matrix

ILL actual branch lengths

Ip, Lo initial branch lengths

ler,Ler reference branch lengths

ILL branch lengths

m number of branches or springs

m,M nodal masses

n,ng,n; - number of all, fixed and interior/free nodes
P external loads

q,Q force densities

q. elastic force densities

q, geometric force densities

Umod modified force densities

r residual forces

s step

So initial/prescribed 2" Piola-Kirchhoff stresses
t time or iteration

t ratios of radial to tangential forces or force densities
uU coordinate differences

u,U coordinate differences in x-direction

v,V velocities

v,V coordinate differences in y-direction

w,W  coordinate differences in z-direction

X,y,Z coordinate in x-,y-, and z-direction

X coordinates of all nodes

Xf coordinates of fixed nodes

X; coordinates of interior/free nodes

X,y,Z coordinates in x-,y-, and z-direction

References

Arcaro, KK, Klinka, V.F, 2009. Finite element analysis for geometric shape
minimization. Journal of the International Association for Shell and Spatial
Structures 50, 79-86.

Argyris, J.H., Angelopoulos, T., Bichat, B., 1974. A general method for the shape
finding of lightweight tension structures. Computer Methods in Applied
Mechanics and Engineering 3, 135-149.

Baraff, D., Witkin, A., 1998. Large steps in cloth animation. In: SIGGRAPH 98
Computer Graphics Proceedings, Orlando, FL, USA.

Barnes, M.R.,, 1977. Form-finding and analysis of tension space structures by
dynamic relaxation, Ph.D. thesis, City University London, United Kingdom.
Barnes, M., Wakefield, D., 1984. Dynamic relaxation applied to interactive form
finding and analysis of air-supported structures. In: Proceedings of Conference

on the Design of Air-supported Structures, pp. 147-161.

Barnes, M.R., 1988. Form-finding and analysis of prestressed nets and membranes.
Computers and Structures 30, 685-695.

Barnes, M.R., 1999. Form finding and analysis of tension structures by dynamic
relaxation. International Journal of Space Structures 14, 89-104.



D. Veenendaal, P. Block/International Journal of Solids and Structures 49 (2012) 3741-3753 3753

Basso, P., Del Grosso, A., 2011. Form-finding methods for structural frameworks: a
review. In: Proceedings of the International Association of Shells and Spatial
Structures, London.

Bletzinger, K.-U., Ramm, E., 1999. A general finite element approach to the form
finding of tensile structures by the updated reference strategy. International
Journal of Space Structures 14, 131-145.

Bletzinger, K.-U., 2011. Section 12.2: Form finding and morphogenesis. In: . Munga,
J.E. Abel (Eds.), Fifty Years of Progress for Shell and Spatial Structures, Multi-
Science, pp. 459-482.

Bondy, J.A., Murty, U.S.R., 1976. Graph Theory with Applications. Elsevier Science
Publishing Co., New York.

Brakke, K.A., 1992. The surface evolver. Experimental Mathematics 1, 141-165.

Buchholdt, H.A., Davies, M., Hussey, M.J.L., 1968. The analysis of cable nets. Journal
of the Institute of Mathematics and Its Applications 4, 339-358.

Christensen, R., 1988. Network formulation of the finite element method.
International Journal of General Systems 14, 59-75.

Coenders, ]., Bosia, D., 2006. Computational tools for design and engineering of
complex geometrical structures: From a theoretical and a practical point of
view. In: Oosterhuis, K., Feireiss, L. (Eds.), Game Set And Match II. On Computer
Games, Advanced Geometries, and Digital Technologies. Episode Publishers, p.
006.

Dieringer, F., Carat++ public wiki, 2010.

Fenves, S.J., Branin Jr., F.H., 1963. Network-topological formulation of structural
analysis. Journal of the Structural Division, Proceedings of the American Society
of Civil Engineers, 483-514.

Griindig, L., Moncrieff, E., Singer, P., Strébel, D., 2000. A history of the principal
developments and applications of the force density method in Germany 1970-
1999. In: Proceedings of IASS-IACM 2000 Fourth International Colloquium on
Computation of Shell & Spatial Structures, Chania-Crete, Greece.

Haber, R.B., Abel, J.F., 1982. Initial equilibrium solution methods for cable reinforced
membranes. Part | - Formulations. Computer Methods in Applied Mechanics
and Engineering 30, 263-284.

Haug, E., Powell, G.H., 1972. Analytical shape finding for cable nets. In: Proceedings
of the 1971 IASS Pacific Symposium Part II on Tension Structures and Space
Frames, 1-5, Tokyo and Kyoto, Japan, pp. 83-92.

Kilian, A., Ochsendorf, J., 2005. Particle-spring systems for structural form finding.
Journal of the International Association for Shell and Spatial Structures: IASS 46,
77-84.

Knudson, W.C., Scordelis, A.C., 1972. Cable forces for desired shapes in cable-net
structures. In: Proceedings of the 1971 IASS Pacific Symposium Part II on
Tension Structures and Space Frames, 1-6, Tokyo and Kyoto, Japan, pp. 93-102.

Lewis, W.J., 1989. The efficiency of numerical methods for the analysis of
prestressed nets and pin-jointed frame structures. Computers and Structures
33, 791-800.

Lewis, W.J., 2008. Computational form-finding methods for fabric structures.
Proceedings of the ICE - Engineering and Computational Mechanics 161,
139-149.

Lewis, W.]., 2003. Tension structures. Form and Behaviour. Thomas Telford, London,
2003.

Linhard, J., 2009. Numerisch-mechanische Betrachtung des Entwurfsprozesses von
Membrantragwerken, Ph.D. thesis, Technische Universitit Miinchen, Germany,
2009.

Linkwitz, K., Schek, HJ., 1971. Einige Bemerkungen zur Berechnung von
vorgespannten Seilnetzkonstruktionen. Ingenieur Archiv 40, 145-158.

Linkwitz, K., 1976. Combined use of computation techniques and models for the
process of form finding for prestressed nets, grid shells and membranes. In:
Proceedings of Internationalen Symposium Weitgespannte Flichentragwerke.

Linkwitz, K., 1999. Formfinding by the “direct approach” and pertinent strategies
for the conceptual design of prestressed and hanging structures. International
Journal of Space Structures 14, 73-87.

Maurin, B., Motro, R., 1997. Investigation of minimal forms with density methods.
Journal of the International Association for Shell and Spatial Structures 38, 143-
154.

Maurin, B., Motro, R., 1998. The surface stress density method as a form-finding tool
for tensile membranes. Engineering Structures 20, 712-719.

Maurin, B., Motro, R., 2001. Investigation of minimal forms with conjugate
gradient method. International Journal of Solids and Structures 38, 2387-
2399.

Meek, J.L., Xia, X., 1999. Computer shape finding of form structures. International
Journal of Space Structures 14, 35-55.

Nouri-Baranger, T., 2002. Form finding method of tensile structures. Revised
geometric stiffness method. Journal of the International Association for Shell
and Spatial Structures 43 (138), 13-21.

Nouri-Baranger, T., 2004. Computational methods for tension-loaded structures.
Archives of Computational Methods in Engineering 11, 143-186.

Ohyama, H., Kawamata, S., 1972. A problem of surface design for prestressed
cable nets. In: Proceedings of the 1971 IASS Pacific Symposium Part II on
Tension Structures and Space Frames, 1-7, Tokyo and Kyoto, Japan, pp. 103-
115.

Pauletti, R.M.O., Pimenta, P.M., 2008. The natural force density method for the shape
finding of taut structures. Computer Methods in Applied Mechanics and
Engineering 197, 4419-4428.

Sanchez, J., Serna, M.A., Paz, M., 2007. A multi-step force-density method and
surface-fitting approach for the preliminary shape design of tensile structures.
Engineering Structures 29, 1966-1976.

Schek, H.-]., 1974. The force density method for form finding and computation of
general networks. Computer Methods in Applied Mechanics and Engineering 3,
115-134.

Siev, A., Eidelman, J., 1964. Stress analysis of prestressed suspended roofs, Journal of
the Structural Division,. Proceedings of the American Society of Civil Engineers,
103-121.

Singer, P., 1995. Die Berechnung von Minimalfldchen, Seifenblasen, Membrane und
Pneus aus geodatischer Sicht, Ph.D. thesis, University of Stuttgart, Germany,
1995.

Strébel, D. 1995. Die Anwendung der Ausgleichungsrechnung auf
elastomechanische Systeme, Ph.D. thesis, University of Stuttgart, Germany.
Tabarrok, B., Qin, Z., 1992. Nonlinear analysis of tension structures. Computers and

Structures 45, 973-984.

Tan, K.Y., 1989. The Computer Design of Tensile Membrane Structures, Ph.D. thesis,
University of Queensland, Brisbane, Australia.

Tibert, A.G., Pellegrino, S., 2003. Review of form-finding methods for tensegrity
structures. International Journal of Space Structures 18, 209-223.

Van Mele, T., Block, P., 2011. Novel form finding method for fabric formwork for
concrete shells. Journal of the International Association of Shell and Spatial
Structures 52, 217-224.

Veenendaal, D., Block, P., 2011. A framework for comparing form finding methods.
In: Proceedings of the International Association of Shells and Spatial Structures,
London.

Wiichner, R., Bletzinger, K.-U., 2005. Stress-adapted numerical form finding of pre-
stressed surfaces by the updated reference strategy. International Journal for
Numerical Methods in Engineering 64, 143-166.

Zhang, ].Y., Ohsaki, M., 2006. Adaptive force density method for form-finding
problem of tensegrity structures. International Journal of Solids and Structures
43, 5658-5673.



	An overview and comparison of structural form finding methods for general networks
	1 Introduction
	1.1 Objective
	1.2 Outline

	2 Form finding
	2.1 Definition (s)
	2.2 Methods and categorization
	2.3 Existing reviews
	2.4 Common criticisms
	2.5 Existing comparisons

	3 Framework
	3.1 Implemented methods
	3.2 Regularization
	3.3 Formulation
	3.4 Data structure and discretization
	3.5 Equilibrium and linearization
	3.6 Forces and force densities
	3.6.1 Material independence
	3.6.2 Comparison of MFDF and GSM

	3.7 Stiffness
	3.8 Mass
	3.9 Converging to equilibrium
	3.10 Convergence criteria

	4 Non-uniform forces and force densities
	4.1 Constrained problems
	4.2 Elastic control
	4.3 Control strings
	4.4 Element size control

	5 Examples
	5.1 Example 1: Saddle
	5.2 Example 2: High point
	5.3 Example 3a: Scherk’s first surface
	5.4 Example 3b: Membrane and cable-net analogy

	6 Conclusions
	Acknowledgements
	Appendix A List of abbreviations
	Appendix B List of variables
	References


